## **SITOR**

Semiconductor Protection Fuses Applications and Standards

Ordering and Engineering Data 2

and L
Techn
Techn Selection and **Engineering Documents** 

Characteristics and Dimension Drawings

Technical Description and Terminology

4

Fall Lings of Sylven and count

## **Applications** and Standards



## **Applications**

### **Features**

SITOR fuse links protect converters against short-circuit.

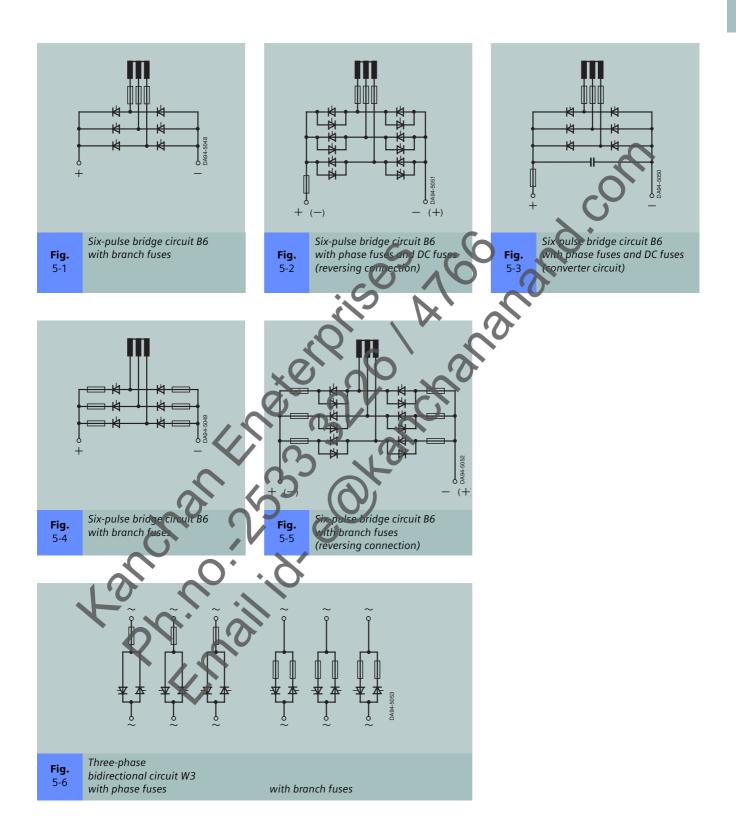
The power semiconductors used in these devices (diodes, thyristors, GTOs and others) require fast-switching elements to protect them as a result of their low thermal capacity. SITOR fuse links are admirably suited for this type of application (fuse links for semiconductor protection with super-fast characteristics).

The following fault situations involving short-circuits can occur:

- Internal short-circuit:

   A defective semiconductor component causes a short-circuit within the converter
- External short-circuit: A fault in the load causes a short-circuit at the output of the converter
- Inverter commutation faults:
  If the converter control fails when in the inverter mode (commutation faults), then the converter circuit forms a short-circuit connection between the DC voltage and AC voltage supply.

Fuse links can be arranged in various ways within the converter circuit. A differentiation is made between the phase fuses in the three-phase reeder cables as well as, if required DC current fuses and branch fuses in the branches of the converter circuit (diagrams 5 1 to 5-6). For center-tap circuit configurations, fuse links can only be located in the three-phase feeder cables as phase fuses.


When using SITOR fuse links, utilization Category aR, the overload protection of the converters up to approx. 350% of the rated current is handled using conventional protective devices (e.g. thermally delayed overload relays). For closed-loop converters overload protection is provided by the current limiting (exception: general-purpose fuses).

**3NE1...-0** SITOR fuse links, utilization Category gS are in-addition to providing semiconductor protection, also designed for overload and short-circuit protection for cables, conductors and busbars. All of the other double function fuses belonging to the SITOR series have gR characteristics. Overload protection is guaranteed if the rated current of the 3NE1..-0 SITOR fuse link is selected corresponding to  $I_n \le I_z$  (DIN VDE 0100 Part 430).

The rules as laid-down in DIN VDE 0100 Part 430 must be applied when dimensioning the fuse links to provide short-circuit protection for cables, conductors and busbars.

# **Applications**

# Possible arrangements



## **Important Information**

#### **Standards**

SITOR fuse links comply with the following Standards and regulations:

- DIN VDE 0636, Part 40
- IEC 60 269-4

When appropriately noted in Sections 2 and 3 'Ordering and engineering data' and 'Characteristics and dimension drawings', SITOR fuse links also fulfill the following Standards and regulations:

IEC 60 269-2-1
 VDE 0636/201
 (for insertion in I.v.h.b.c. fuse bases according to VDE 0636/201 as well as in fused-switch disconnectors and disconnectors with fuses)

• (UL)

The following Sitor fuse links and l.v.h.b.c. fuse bases are @ recognized:

| Series                                                                                 | Guide<br>number    | File number        |
|----------------------------------------------------------------------------------------|--------------------|--------------------|
| 3NC1 0<br>3NC1 4<br>3NC2 2<br>3NE1<br>3NE3 2<br>3NE3 3<br>3NE4 1<br>3NE8 01<br>3NE8 71 | JFHR2              | E) 67357           |
| 3NC1 1                                                                                 | JDDZ               | E223216            |
| 3NC1 038<br>3NC1 09<br>3NC1 49<br>3NC2 29.                                             | IZLT2              | E220063            |
| 3NH3 030<br>3NH3 120<br>3NH3 230<br>3NH3 330<br>3NH3 430                               | JFHR2              | E171267            |
| 3NC1 451-1<br>3NC2 258-1                                                               | being<br>processed | being<br>processed |

• IEC 60 269-4-1 VDE 0636/401 (for bolting to busbars) SITO links. Sizes 1 to 3 with an ins

(for bolting to busbars) SITOR fuse links, Sizes 1 to 3 with an inside caliper of 110 mm can also be inserted in l.v.h.b.c. fuse bases according to IEC 60 269-2-1 as well as in fused switch disconnectors and switch disconnectors with fuses.

• ( €

All of the SITOR fuse links with rated voltages  $V_n \le 1000 \text{ V}$  have the CE marking in compliance with the Low-Voltage Directive 731/23/EEC The CE marking confirms that the products are in compliance with the requirements as laid bowr in the Directive.

## Environmentally-friendly recycling

In 1995, seven German manufacturers of l.v.h.b.c./h.v.h.b.c. fuse links founded a non-profit association.



I.v.h.b.c. h.v.h.b.c Recycling



The objective is to practically and sensibly recycle fuse links and to define an acceptable disposal concept which fulfills all of the requirements of today's environmental protection legislation.

The used fused links are collected, somed and then recycled without the packaging; materials which have been melted and recovered are then recycled.

According to the rules and regulations of the association, excess funds from the recycling process are donated to a university to promote research in the area of fuse links.

More detailed information is available under:

http://www.nh-hh-recycling.de

#### **Liability exclusion**

The products described here were developed as part of a complete system or machine to assume safety-related functions. Generally, a complete safety-related system includes sensors, evaluation units, signaling devices and concepts for safe shutdown. It is the responsibility of the manufacturer of a plant or machine to ensure that his complete plant or machine functions correctly. Siemens AG, its regional offices and associated companies (known in the following as "Siemens") are able to guarantee all of the properties and characteristics of a complete plant or machine which Siemens itself did not design.

Siemens does not accept any liability for the recommendations which are either provided or implicitly provided in the following document. The information in this document does not represent a new quarantee, warranty or liability claims which extend beyond Siemens general conditions of supply.

#### **Caution**

Tall 10 in the second of the s

Land 1633 O Land Colf Line 1633 O Land Colf Line 1633 O Land Line 1633 O L

## Ordering and Engineering Data

SITOR fuse links
SITOR fuse links for special applications
Accessories for l.v.h.b.c fuses
Accessories for cylindrical fuses



# **Ordering and Engineering Data**

#### 2.1 **SITOR fuse links**

|                      | Order No.                                                                                                                                                  | Weight<br>kg                                                         | Rated voltage $V_{\rm n}$                                   |                            | Rated current                                               | Clearing I <sup>2</sup> t value                                                |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|
|                      |                                                                                                                                                            |                                                                      | AC<br>V                                                     | DC<br>V                    | I <sub>n</sub>                                              | I <sup>2</sup> t <sub>A</sub> at 1.0 x V <sub>n</sub> A <sup>2</sup> s         |
| Plate and the second | 3NC2 423 <sup>3)</sup> 3NC2 425 <sup>3)</sup> 3NC2 427 <sup>3)</sup> 3NC2 428 <sup>3)</sup> 3NC2 431 <sup>3)</sup> 3NC2 432 <sup>3)</sup>                  | 0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                         | 500<br>500<br>500<br>500<br>500<br>500                      | -<br>-<br>-<br>-           | 150<br>200<br>250<br>300<br>350<br>400                      | 33000<br>64000<br>99000<br>132000<br>249000<br>390000                          |
|                      | 3NC2 423-3<br>3NC2 425-3<br>3NC2 427-3<br>3NC2 428-3<br>3NC2 431-3<br>3NC2 432-3                                                                           | 0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                         | 500<br>500<br>500<br>500<br>500<br>500                      |                            | 150<br>200<br>250<br>300<br>350<br>400                      | 33000<br>64000<br>99000<br>132000<br>249000<br>390000                          |
|                      | 3NC8 423 <sup>3)</sup> 3NC8 425 <sup>3)</sup> 3NC8 427 <sup>3)</sup> 3NC8 431 <sup>3)</sup> 3NC8 434 <sup>3)</sup>                                         | 0.95<br>0.95<br>0.95<br>0.95<br>0.95                                 | 600<br>660<br>660<br>660<br>660                             | 200                        | 150<br>200<br>250<br>350<br>500                             | 17600<br>38400<br>70400<br>176000<br>448000                                    |
|                      | 3NC8 423-3<br>3NC8 425-3<br>3NC8 427-3<br>3NC8 431-3<br>3NC8 434-3<br>3NC8 444-3                                                                           | 0.95<br>0.95<br>0.95<br>0.95<br>0.95                                 | 660<br>660<br>660<br>660<br>550<br>600                      | -<br>-<br>-<br>-           | 150<br>200<br>250<br>350<br>500<br>1000                     | 17600<br>38400<br>70400<br>176000<br>448000<br>2480000                         |
| C C                  | 3NE3 221 2)<br>3NE3 222 2)<br>3NE3 224 ()<br>3NE3 225 2)<br>3NE3 227 2<br>3NE3 230-0B 2)<br>3NE3 231 2)<br>3NE3 232-0B 2)<br>3NE3 232-0B 2)<br>3NE3 233 2) | 0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55 | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100 | -<br>-<br>-<br>-<br>-<br>- | 100<br>125<br>160<br>200<br>250<br>315<br>350<br>400<br>450 | 4800<br>7200<br>13000<br>30000<br>48000<br>80000<br>100000<br>135000<br>175000 |
| 1) Envelope di ne    | nsion and pullers corres                                                                                                                                   |                                                                      |                                                             | ntact hlades are           |                                                             |                                                                                |

1) Envelope di mension and pullers correspond to IEC 60269-2-1; however, contact blades are slotted according to IEC 60269-4-1 2) ® recognited (50), for Guide Nos. and File Nos. of the Approval, refer to Section 1 'Applications and Standards' 3) Special version with 2 longitudinal slots (not shown in the diagram)

Table

| 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pre-arcing<br>I <sup>2</sup> t value<br>A <sup>2</sup> s | Power loss<br>W            | Utilization<br>category          | Cyclic load<br>factor<br>WL  | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653)<br>mm | Characteris-<br>tics and<br>dimension<br>drawings        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|----------------------------------|------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 13600 40 gR 0.85 31 10 3.1.1 28000 65 gR 0.85 31 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1.1 110 3.1 | 13600<br>21000<br>28000<br>53000                         | 40<br>50<br>65<br>60       | gR<br>gR<br>gR<br>aR             | 0.85<br>0.85<br>0.85<br>0.85 | 3<br>3<br>3<br>3                                                             |                                                                                                 | 3.1.1<br>3.1.1                                           |
| 2400       50       gR       0.85       3       -       3.1.4         4400       72       gR       0.85       3       -       3.1.4         11000       95       gR       0.85       3       -       3.1.4         28000       130       gR       0.85       3       -       3.1.4         2400       50       gR       0.85       3       110       3.1.4         2400       50       gR       0.85       9       110       3.1.4         4400       72       gR       0.85       9       110       3.1.4         11000       95       gR       0.85       9       110       3.1.4         28000       130       9K       0.85       3       10       110       3.1.4         400000       140       aR       0.9       3       110       3.1.14         1040       36       aR       0.95       1       110       3.1.14         1850       42       aR       1       111       110       3.1.14         4150       42       aR       1       111       110       3.1.14         4150 <td< td=""><td>13600<br/>21000<br/>28000<br/>53000</td><td>40<br/>50<br/>65<br/>60</td><td>gR<br/>gR<br/>gR<br/>aR</td><td>0.85<br/>0.85<br/>0.85<br/>0.85</td><td>31)</td><td>110<br/>110<br/>110<br/>110</td><td>3.1.1<br/>3.1.1<br/>3.1.1<br/>3.1.1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13600<br>21000<br>28000<br>53000                         | 40<br>50<br>65<br>60       | gR<br>gR<br>gR<br>aR             | 0.85<br>0.85<br>0.85<br>0.85 | 31)                                                                          | 110<br>110<br>110<br>110                                                                        | 3.1.1<br>3.1.1<br>3.1.1<br>3.1.1                         |
| 2400       50       gR       (.8)       50       110       3.1.4         4400       72       gR       0.85       3.1)       110       3.1.4         11000       95       gR       0.85       3.1)       110       3.1.4         28000       130       gR       0.85       3.1)       110       3.1.4         400000       140       aR       0.9       3.1)       110       3.1.4         1040       36       aR       0.95       1.1)       110       3.1.14         1850       42       aR       1       1.1)       110       3.1.14         4150       42       aR       1       1.1)       110       3.1.14         6650       50       dR       1       1.1)       110       3.1.14         13400       65       aR       0.95       1.1)       110       3.1.15         16600       75       aR       0.95       1.1)       110       3.1.15         22600       85       aR       0.9       1.1)       110       3.1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2400<br>4400<br>11000                                    | 50<br>72<br>95             | gR<br>gR<br>gR                   | 0.85<br>0.85<br>0.85         | 3                                                                            | _<br>_<br>_<br>_                                                                                | 3.1.4<br>3.1.4<br>3.1.4                                  |
| 1040     36     aR     0.95     1 1)     110     3.1.14       1850     42     aR     1     1 1)     110     3.1.14       4150     42     aR     1     1 1)     110     3.1.14       6650     50     dR     1     1 1)     110     3.1.14       13400     65     aR     0.95     1 1)     110     3.1.15       16600     75     aR     0.9     1 1)     110     3.1.15       22600     85     aR     0.9     1 1)     110     3.1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2400<br>4400<br>11000<br>28000                           | 50<br>72<br>95<br>130      | gR<br>gR<br>gR                   | (.8)<br>0.85<br>0.85<br>0.85 | 3 1<br>5 1)<br>5 1)<br>3 1)<br>3 1)                                          | 110<br>110<br>110<br>110                                                                        | 3.1.4<br>3.1.4<br>3.1.4<br>3.1.4                         |
| 77 JUN - 70 dl U.7 17 110 5.1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1040<br>1850<br>4150<br>6650<br>13400<br>16600           | 36<br>42<br>42<br>50<br>65 | aR<br>aR<br>aR<br>aR<br>aR<br>aR | 0.95<br>1<br>1<br>1<br>0.95  | 1 1)<br>1 1)<br>1 1)<br>1 1)<br>1 1)<br>1 1)                                 | 110<br>110<br>110<br>110<br>110<br>110                                                          | 3.1.14<br>3.1.14<br>3.1.14<br>3.1.14<br>3.1.15<br>3.1.15 |

|                                          | Order No.                                           | Weight               | Rated voltage      |                   | Rated current        | Clearing               |
|------------------------------------------|-----------------------------------------------------|----------------------|--------------------|-------------------|----------------------|------------------------|
|                                          |                                                     | kg                   | $V_{n}$            |                   |                      | I <sup>2</sup> t value |
|                                          |                                                     |                      |                    |                   |                      |                        |
|                                          |                                                     |                      | AC                 | DC                | I <sub>n</sub>       | $I^2t_A$               |
|                                          |                                                     |                      | V                  | V                 | ^                    | at 1.0 x $V_n$ $A^2$ s |
|                                          | -1                                                  |                      | V                  | V                 | А                    |                        |
| and the same of                          | 3NE3 332-0B <sup>2)</sup>                           | 0.7                  | 1000               | -                 | 400                  | 135000                 |
| - Oliver                                 | 3NE3 333 <sup>2)</sup><br>3NE3 334-0B <sup>2)</sup> | 0.7                  | 1000               | -                 | 450                  | 175000                 |
| 22                                       | 3NE3 334-08 <sup>-2</sup>                           | 0.7<br>0.7           | 1000<br>1000       | _                 | 500<br>560           | 260000<br>360000       |
| 長                                        | 3NE3 336 <sup>2)</sup>                              | 0.7                  | 1000               | _                 | 630                  | 600000                 |
|                                          | 3NE3 337-8 <sup>2)</sup>                            | 0.7                  | 900                | _                 | 710                  | 800000                 |
| _                                        | 3NE3 338-8 <sup>2)</sup>                            | 0.7                  | 800                | _                 | 800                  | 850000                 |
|                                          | 3NE3 340-8 <sup>2)</sup>                            | 0.7                  | 690                | -                 | 900                  | 1300000                |
|                                          | 3NE3 421                                            | 1.15                 | 1000               | _                 | 100                  | 13500                  |
|                                          | 3NE3 430                                            | 1.15                 | 1000               | _                 | 315                  | 218000                 |
| -94                                      | 3NE3 432                                            | 1.15                 | 1000               | _                 | 400                  | 364000                 |
| 100                                      | 3NE3 434                                            | 1.15                 | 1000               | -                 | 500                  | 870000                 |
| 34                                       | 3NE3 626<br>3NE3 635                                | 1.15<br>1.15         | 1000<br>1000       | _                 | 224<br>450           | 54000<br>488000        |
|                                          | 3NE3 635-6 <sup>4)</sup>                            | 1.15                 | 1000               | _                 | 450                  | 488000                 |
|                                          | 3NE3 636                                            | 1.15                 | 1000               | -                 | 630                  | 1280000                |
|                                          | 3NE3 637                                            | 1.15                 | 1000               | - <b>-</b> (O)    | 710                  | 1950000                |
|                                          | 3NE3 637-1                                          | 1.15                 | 1000               |                   | 710                  | 1950000                |
|                                          | 3NE4 101 <sup>2)</sup>                              | 0.27                 | 1000               | <u> </u>          | 32                   | 280                    |
|                                          | 3NE4 102 <sup>2)</sup>                              | 0.27                 | 1000               | -                 | 40                   | 500                    |
|                                          | 3NE4 117 <sup>2)</sup>                              | 0.27                 | 1000               | -                 | 50                   | 800                    |
| 100                                      | 3NE4 118 <sup>2)</sup>                              | 0.27                 | 1000               | - 10              | 63                   | 1500                   |
| 22                                       | 3NE4 120 <sup>2)</sup><br>3NE4 121 <sup>2)</sup>    | 0.27<br>0.27         | 1000               |                   | 80<br>100            | 3000<br>6000           |
|                                          | 3NE4 122 <sup>2)</sup>                              | 0.27                 | 1000               |                   | 125                  | 14000                  |
|                                          | 3NE4 124 <sup>2)</sup>                              | 027                  | 1000               | O'                | 160                  | 29000                  |
|                                          | 3NE4 327-0B                                         | 0.7                  | 800                | _                 | 250                  | 29700                  |
|                                          | 3NE4 330-0B                                         | 0.7                  | 800                | _                 | 315                  | 60700                  |
| -10/100                                  | 3NE4 333-0B                                         | 0.7                  | 800                | _                 | 450                  | 191000                 |
| 100                                      | 3NE4 334-0B                                         | 0.7                  | 800                | _                 | 500                  | 276000                 |
| 题                                        | 3NE4 337                                            | 0.7                  | 300                | -                 | 710                  | 923000                 |
|                                          | 0                                                   | 7                    |                    |                   |                      |                        |
|                                          |                                                     |                      |                    |                   |                      |                        |
| 1) Envelope dime                         | ension and pullers corres                           | pond to IEC 60269-2  | l-1; however, co   | ntact blades are  | slotted according to | IEC 60269-4-1          |
| <b>Table</b> 2) ® recognized 12-2 3) M12 | ( <b>%)</b> ) for Guide Nos. and                    | File Nos. of the App | rovai, refer to Se | ection i Applicat | ions ana Stanaaras   |                        |
| 4) Diagram, refer                        | to Section 4.2, 3VE6 4                              | . 3NE9 4.            |                    |                   |                      |                        |
|                                          |                                                     |                      |                    |                   |                      |                        |
|                                          | O                                                   | <b>\</b>             |                    |                   |                      |                        |
|                                          |                                                     | <b>J</b>             |                    |                   |                      |                        |
|                                          | 1, 11,                                              | •                    |                    |                   |                      |                        |
| V                                        |                                                     |                      |                    |                   |                      |                        |
| , $\sim$                                 |                                                     |                      |                    |                   |                      |                        |
|                                          |                                                     |                      |                    |                   |                      |                        |
|                                          |                                                     |                      |                    |                   |                      |                        |
|                                          | (/)                                                 |                      |                    |                   |                      |                        |
|                                          | V                                                   |                      |                    |                   |                      |                        |
|                                          | •                                                   |                      |                    |                   |                      |                        |

| Pre-arcing<br>I <sup>2</sup> t value                                           | Power loss                                              | Utilization category                               | Cyclic load<br>factor<br>WL                     | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653) | Characteristics and dimension drawings                                                           |
|--------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| A <sup>2</sup> s  22600 29500 46100 66400 104000 149000 184000 223000          | 85<br>90<br>90<br>95<br>100<br>105<br>130<br>165        | aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.95<br>0.95 | 2 1) 2 1) 2 1) 2 1) 2 1) 2 1) 2 1) 2 1)                                      | 110<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>110                               | Section  3.1.16 3.1.16 3.1.16 3.1.16 3.1.16 3.1.16 3.1.16 3.1.16                                 |
| 1800<br>29000<br>48500<br>116000<br>7200<br>65000<br>65000<br>170000<br>260000 | 25<br>80<br>110<br>95<br>85<br>110<br>110<br>132<br>145 | aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1       | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                         | 130<br>130<br>130<br>130<br>130<br>130<br>130<br>139<br>130<br>130                        | 3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17<br>3.1.17 |
| 40<br>75<br>120<br>230<br>450<br>900<br>1800<br>3600                           | 12<br>13<br>16<br>20<br>22<br>24<br>30<br>35            | gR<br>gR<br>gR<br>aR<br>aR<br>aR<br>aR<br>aR       | 0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9   |                                                                              | -<br>-<br>-<br>-                                                                          | 3.1.13<br>3.1.13<br>3.1.13<br>3.1.13<br>3.1.13<br>3.1.13<br>3.1.13<br>3.1.13                     |
| 3600<br>7400<br>29400<br>42500<br>142000                                       | 105<br>120<br>140<br>155<br>155                         | aR<br>aR<br>aR<br>aR                               | 0.85<br>0.85<br>0.85<br>0.95                    | 2 1)<br>2 1)<br>2 1,<br>2 1)<br>2 1)                                         | 110<br>110<br>110<br>110<br>110                                                           | 3.1.12<br>3.1.12<br>3.1.12<br>3.1.12<br>3.1.12                                                   |
| 7400<br>29400<br>42500<br>142000                                               |                                                         |                                                    |                                                 |                                                                              |                                                                                           |                                                                                                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order No.                                                                                                       | Weight<br>kg                                                 | Rated voltage $V_n$                           |                  | Rated current                                | Clearing I <sup>2</sup> t value                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------|----------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                              | AC<br>V                                       | DC<br>V          | I <sub>n</sub>                               | $I^2t_A$ at 1.0 x $V_n$ $A^2s$                             |
| E Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3NE5 424<br>3NE5 426<br>3NE5 430<br>3NE5 431<br>3NE5 433<br>3NE5 433-1                                          | 1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95                 | 1500<br>1500<br>1500<br>1500<br>1500<br>1500  | -                | 160<br>224<br>315<br>350<br>450              | 54000<br>138000<br>311000<br>428000<br>870000<br>870000    |
| and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3NE5 627<br>3NE5 633<br>3NE5 643                                                                                | 1.6<br>1.6<br>1.6                                            | 1500<br>1500<br>1500                          | -<br>-<br>-      | 250<br>450<br>600                            | 84000<br>590000<br>1950000                                 |
| The second secon | 3NE1 813-0 1) 3NE1 814-0 1) 3NE1 815-0 1) 3NE1 803-0 1) 3NE1 802-0 1) 3NE1 817-0 1) 3NE1 818-0 1) 3NE1 820-0 1) | 0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13<br>0.13 | 690<br>690<br>690<br>690<br>690<br>690<br>690 |                  | 16<br>20<br>25<br>33<br>40<br>50<br>63<br>80 | 200<br>430<br>780<br>1700<br>3000<br>4400<br>9000<br>18000 |
| The state of the s | 3NE1 021-0 <sup>1)</sup> 3NE1 022-0 <sup>1)</sup> 3NE1 022-2 <sup>1)</sup>                                      | 0.2                                                          | 690<br>690<br>690                             | O C              | 100<br>125<br>125                            | 33 000<br>63 000<br>23 000                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE1 224-0 1)<br>3NE1 225-0 1<br>3NE1 227-0 1)<br>3NE1 230-0 1)                                                 | 0.55<br>0.65<br>0.55<br>0.55                                 | 690<br>690                                    | -<br>-<br>-      | 160<br>200<br>250<br>315                     | 60000<br>100000<br>200000<br>310000                        |
| Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3NE) 224-2 1)<br>3NE1 225-2 1)<br>3NE1 227-2 1)<br>3NE1 230-2 1)                                                | 0.55<br>0.55<br>0.55<br>0.55                                 | 690<br>690<br>690<br>690                      | -<br>-<br>-      | 160<br>200<br>250<br>315                     | 15840<br>44000<br>68800<br>135500                          |
| Table 1) ® recognized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( <b>91</b> ), for Guide Nos. and                                                                               | Hile Nos. of the App                                         | roval, refer to Se                            | ction 1 'Applica | tions and Standards'                         |                                                            |
| A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T. Ugli                                                                                                         |                                                              |                                               |                  |                                              |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                               |                                                              |                                               |                  |                                              |                                                            |

| Pre-arcing<br>I <sup>2</sup> t value<br>A <sup>2</sup> s | Power loss                        | Utilization<br>category                                              | Cyclic load<br>factor<br>WL      | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653)<br>mm | Characteristics and dimension drawings                                        |
|----------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 7200<br>18400<br>41500<br>57000<br>116000                | 56<br>80<br>115<br>135<br>145     | aR<br>aR<br>aR<br>aR<br>aR                                           | 1<br>1<br>1<br>1<br>0.95<br>0.95 | 3<br>3<br>3<br>3<br>3<br>3                                                   | 210<br>210<br>210<br>210<br>210<br>210<br>210                                                   | 3.1.18<br>3.1.18<br>3.1.18<br>3.1.18<br>3.1.18<br>3.1.18                      |
| 11200<br>78500<br>260000                                 | 130<br>160<br>145                 | aR<br>aR<br>aR                                                       | 1<br>1<br>1                      | 3<br>3<br>3                                                                  | 170<br>170<br>170                                                                               | 3.1.19<br>2.1.19<br>2.1.19                                                    |
| 18<br>41<br>74<br>166<br>295<br>461<br>903<br>1843       | 3<br>3.5<br>4<br>5<br>5<br>6<br>7 | gR/gS<br>gR/gS<br>gR/gS<br>gR/gS<br>gR/gS<br>gR/gS<br>gR/gS<br>gR/gS |                                  | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000                         | John.                                                                                           | 3.1.5<br>3.1.5<br>3.1.5<br>3.1.5<br>3.1.5<br>3.1.5<br>3.1.5<br>3.1.5<br>3.1.5 |
| 3100<br>6000<br>3115                                     | 10<br>11<br>13.5                  | gR/gS<br>gR/gS<br>gR                                                 | 370                              | 00 00 00                                                                     | -<br>-<br>-                                                                                     | 3.1.6<br>3.1.6<br>3.1.9                                                       |
| 7400<br>14500<br>29500<br>46100                          | 24<br>27<br>30<br>38              | gR/gS<br>gR/gS<br>gR/gS<br>gR/gS                                     | b A                              | 1<br>1<br>1<br>1                                                             | -<br>-<br>-                                                                                     | 3.1.6<br>3.1.6<br>3.1.6<br>3.1.6                                              |
| 29500<br>46100<br>2650<br>5645<br>11520<br>22580         | 30<br>28<br>42                    | gR<br>gR<br>gR                                                       |                                  | 1<br>1<br>1<br>1                                                             | -<br>-<br>-<br>-                                                                                | 3.1.9<br>3.1.9<br>3.1.9<br>3.1.9                                              |
| T Q                                                      | C'i                               | Oll                                                                  |                                  |                                                                              |                                                                                                 |                                                                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order No.                                                                                                                                             | Weight<br>kg                                                 | Rated voltage $V_n$                                          |                  | Rated current                                                      | Clearing<br>I <sup>2</sup> t value                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |                                                              | AC<br>V                                                      | DC<br>V          | I <sub>n</sub>                                                     | $I^2t_A$ at 1.0 x $V_n$ $A^2s$                                                             |
| Street)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3NE1 331-0 <sup>2)</sup> 3NE1 332-0 <sup>2)</sup> 3NE1 333-0 <sup>2)</sup> 3NE1 334-0 <sup>2)</sup> 3NE1 331-2 <sup>2)</sup>                          | 0.7<br>0.7<br>0.7<br>0.7                                     | 690<br>690<br>690<br>690                                     | -<br>-<br>-<br>- | 350<br>400<br>450<br>500                                           | 430 000<br>590 000<br>750 000<br>950 000                                                   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3NE1 333-2 <sup>2)</sup><br>3NE1 334-2 <sup>2)</sup>                                                                                                  | 0.7<br>0.7                                                   | 690<br>690                                                   | -<br>-           | 450<br>500                                                         | 276000<br>398000                                                                           |
| A STATE OF THE PARTY OF THE PAR | 3NE1 435-0 <sup>2)</sup> 3NE1 436-0 <sup>2)</sup> 3NE1 437-0 <sup>2)</sup> 3NE1 438-0 <sup>2)</sup>                                                   | 0.95<br>0.95<br>0.95<br>0.95                                 | 690<br>690<br>690<br>690                                     | -<br>-<br>-      | 560<br>630<br>710<br>800                                           | 1700000<br>2350000<br>3400000<br>5000000                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE1 437-1 <sup>2)</sup><br>3NE1 438-1 <sup>2)</sup>                                                                                                  | 0.95<br>0.95                                                 | 600<br>600                                                   | -<br>-           | 710<br>800                                                         | 2460000<br>3350000                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE1 435-2 <sup>2)</sup> 3NE1 436-2 <sup>2)</sup> 3NE1 447-2 <sup>2)</sup> 3NE1 437-2 <sup>2)</sup> 3NE1 438-2 <sup>2)</sup> 3NE1 448-2 <sup>2)</sup> | 1<br>1<br>1<br>1<br>1<br>1<br>1                              | 690<br>690<br>690<br>690<br>690                              |                  | 560<br>630<br>670<br>710<br>800<br>850                             | 845000<br>1320000<br>1557000<br>1725000<br>2348000<br>3381000                              |
| and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3NE7 425<br>3NE7 427<br>3NE7 431<br>3NE7 432<br>3NE7 633<br>3NE7 633-1<br>3NE7 648-1<br>3NE7 636<br>3NE7 636-1<br>3NE7 637-1                          | 1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95 | 2000<br>2000<br>2000<br>2000<br>2100<br>2000<br>2000<br>2000 |                  | 200<br>250<br>350<br>400<br>450<br>450<br>525<br>630<br>630<br>710 | 138000<br>218000<br>555000<br>870000<br>960000<br>1120000<br>1950000<br>1950000<br>3110000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE9 632-1<br>3NE9 534-1<br>3NES 636-1A                                                                                                               | 25<br>25<br>25                                               | 1500<br>2500<br>2500                                         | -<br>-<br>-      | 400<br>500<br>630                                                  | 620000<br>1270000<br>2800000                                                               |

**Table** 16-4

1) M12
2) ® recognized (**Al**), for Guide Nos. and File Nos. of the Approval, refer to Section 1 'Applications and Standards'

| Pre-arcing<br>I <sup>2</sup> t value                                                          | Power loss                                                        | Utilization category                               | Cyclic load<br>factor<br>WL | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653) | Characteris-<br>tics and<br>dimension<br>drawings                                                |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| A <sup>2</sup> s                                                                              | W                                                                 |                                                    |                             |                                                                              | mm                                                                                        | Section                                                                                          |
| 58000<br>84000<br>104000<br>149000                                                            | 42<br>45<br>53<br>56                                              | gR/gS<br>gR/gS<br>gR/gS<br>gR/gS                   | 1<br>1<br>1                 | 2<br>2<br>2<br>2                                                             | -<br>-<br>-                                                                               | 3.1.7<br>3.1.7<br>3.1.7<br>3.1.7                                                                 |
| 29500<br>46100<br>66400                                                                       | 44<br>62<br>65                                                    | gR<br>gR<br>gR                                     | 1<br>1<br>1                 | 2<br>2<br>2                                                                  | -<br>-<br>-                                                                               | 3.1.9<br>3.1.9<br>3.1.9                                                                          |
| 215000<br>293000<br>437000<br>723000                                                          | 50<br>55<br>60<br>59                                              | gR/gS<br>gR/gS<br>gR/gS<br>gR/gS                   | 1<br>1<br>1                 | 3<br>3<br>3<br>3                                                             | -<br>-<br>-                                                                               | 3.1.7<br>3.1.7<br>3.1.7<br>3.1.7                                                                 |
| 321000<br>437000                                                                              | 65<br>72                                                          | gR<br>gR                                           | 1                           | 3 3                                                                          |                                                                                           | 3.1.8<br>3.1.8                                                                                   |
| 130100<br>203000<br>240000<br>265000<br>361000<br>520000                                      | 60<br>62<br>65<br>72<br>82<br>76                                  | gR<br>gR<br>gR<br>gR<br>gR<br>gR                   |                             | 3<br>3<br>3<br>3<br>3<br>3                                                   | Sug.                                                                                      | 3.1.10<br>3.1.10<br>3.1.10<br>3.1.10<br>3.1.10<br>3.1.10                                         |
| 18400<br>29000<br>74000<br>116000<br>128000<br>128000<br>149000<br>260000<br>260000<br>415000 | 75<br>110<br>120<br>150<br>160<br>160<br>210<br>220<br>220<br>275 | aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR | 3000                        | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | 210<br>210<br>210<br>210<br>210<br>210<br>210 1)<br>210 1)<br>210 210 1)<br>210 1)        | 3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20<br>3.1.20 |
| 81000<br>170000<br>385000                                                                     | 205<br>235<br>275                                                 | aR<br>aR                                           | S A                         | 3<br>3<br>3                                                                  | 260 <sup>1)</sup><br>260 <sup>1)</sup><br>260 <sup>1)</sup>                               | 3.1.21<br>3.1.21<br>3.1.21                                                                       |
|                                                                                               |                                                                   | 6,0                                                |                             |                                                                              |                                                                                           |                                                                                                  |
| 260000<br>260000<br>415000<br>81000<br>170000<br>385000                                       | A)                                                                | O                                                  |                             |                                                                              |                                                                                           |                                                                                                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order No.                                            | Weight               | Rated voltage      |                                        | Rated current        | Clearing                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|--------------------|----------------------------------------|----------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | kg                   | V <sub>n</sub>     |                                        |                      | I <sup>2</sup> t value  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                      | AC                 | DC                                     | In                   | $I^2t_A$ at 1.0 x $V_n$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1)                                                   |                      | V                  | V                                      | A                    | $A^2s$                  |
| -the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3NE8 015-1 1)<br>3NE8 003-1 1)                       | 0.2<br>0.2           | 690<br>690         | _                                      | 25<br>35             | 180<br>400              |
| Market<br>School<br>School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3NE8 017-1 1)<br>3NE8 018-1 1)                       | 0.2<br>0.2           | 690<br>690         | _                                      | 50<br>63             | 700<br>1400             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 020-1 1)<br>3NE8 021-1 1)                       | 0.2<br>0.2           | 690<br>690         | _                                      | 80<br>100            | 2400<br>4200            |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3NE8 022-1 <sup>1)</sup><br>3NE8 024-1 <sup>1)</sup> | 0.2                  | 690<br>690         | _                                      | 125<br>160           | 6500<br>13000           |
| (PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3NE8 714-1                                           | 0.13                 | 690                | 700 <sup>1)</sup>                      | 20                   | 83                      |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3NE8 715-1<br>3NE8 701-1                             | 0.13<br>0.13         | 690<br>690         | 700 <sup>1)</sup><br>700 <sup>1)</sup> | 25<br>32             | 140<br>285              |
| THE TOTAL PROPERTY OF THE PARTY | 3NE8 702-1<br>3NE8 717-1                             | 0.13<br>0.13         | 690<br>690         | 700 <sup>1)</sup><br>700 <sup>1)</sup> | 40 50                | 490<br>815              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 718-1<br>3NE8 720-1                             | 0.13<br>0.13         | 690<br>690         | 700 <sup>1)</sup><br>700 <sup>1)</sup> | 63                   | 1550<br>2700            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 721-1<br>3NE8 722-1                             | 0.13<br>0.13         | 690<br>690         | 700 <sup>1)</sup>                      | 100                  | 4950<br>9100            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 724-1                                           | 0.13                 | 690<br>690         | 700 <sup>1)</sup><br>700 <sup>1)</sup> | 160                  | 17000                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 725-1<br>3NE8 727-1                             | 0.13<br>0.13         | 690                | 700 <sup>1)</sup>                      | 250                  | 30000<br>55000          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NE8 731-1<br>3NC1 003                               | 0.13                 | 690                | 700 <sup>1)</sup>                      | 315<br>3             | 85500<br>8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NC1 006<br>3NC1 008                                 | 0.01                 | 600<br>600         | 400                                    | 6                    | 30<br>50                |
| 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3NC1 010                                             | 0.01                 | 600                | 400                                    | 10                   | 70                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NC1 012<br>3NC1 016                                 | 0.01                 | 600                | 400                                    | 12<br>16             | 120<br>150              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NC1 020<br>3NC1 025                                 | 0.01<br>0.01         | 600                | 400<br>400                             | 20<br>25             | 260<br>390              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NC1 037                                             | 0.01                 | 600                | 400                                    | 32                   | 600                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3NC1 105                                             | 0.01                 | 600                | -                                      | 3<br>5               | -                       |
| 1) ® recognized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( <b>91</b> ) for Guide Nos, and                     | File Nos. of the App | roval, refer to Se | ection 1 'Applica                      | tions and Standards' |                         |
| Table 1) ® recognized 2) CLASS CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60. J.S                                              |                      |                    |                                        |                      |                         |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                      |                    |                                        |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0, .(                                                | <b>S</b>             |                    |                                        |                      |                         |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                      |                    |                                        |                      |                         |
| 1 ~1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ), O),                                               |                      |                    |                                        |                      |                         |
| Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ~                                                  |                      |                    |                                        |                      |                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                      |                    |                                        |                      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                      |                    |                                        |                      |                         |

| Pre-arcing $I^2t$ value $A^2s$                                                            | Power loss                                                               | Utilization<br>category                                              | Cyclic load<br>factor<br><i>WL</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620)                    | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653)<br>mm | Characteristics and dimension drawings                                                                   |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 30<br>70<br>120<br>260<br>450<br>850<br>1400<br>2800                                      | 7<br>9<br>14<br>16<br>19<br>22<br>28<br>38                               | gR<br>gR<br>gR<br>gR<br>aR<br>aR<br>aR<br>aR                         | 0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                    | -<br>-<br>-<br>-<br>-<br>-                                                                      | 3.1.11<br>3.1.11<br>3.1.11<br>3.1.11<br>3.1.11<br>3.1.11<br>3.1.11<br>3.1.11                             |
| 12<br>19<br>40<br>69<br>115<br>215<br>380<br>695<br>1250<br>2350<br>4200<br>7750<br>12000 | 7<br>9<br>10<br>12<br>15<br>16<br>19<br>24<br>28<br>32<br>37<br>42<br>55 | gR<br>gR<br>gR<br>gR<br>gR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR | 0.9<br>0.9<br>0.9<br>0.9<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95<br>0.96<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97<br>0.97 | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                               | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                      | 3.1.2<br>3.1.2<br>3.1.2<br>3.1.2<br>3.1.2<br>3.1.3<br>3.1.3<br>3.1.3<br>3.1.3<br>3.1.3<br>3.1.3<br>3.1.3 |
| 3<br>4<br>6<br>9<br>15<br>25<br>34<br>60<br>95                                            | 1.2<br>1.5<br>2<br>2.5<br>3<br>3.5<br>4.8<br>6<br>7.5                    | aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 x 38<br>10 x 38 | -<br>-<br>-<br>-<br>-<br>-                                                                      | 3.1.22<br>3.1.22<br>3.1.22<br>3.1.22<br>3.1.22<br>3.1.22<br>3.1.22<br>3.1.22<br>3.1.22                   |
| <del>-</del><br>-                                                                         | 2.5                                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 x 38<br>10 x 38                                                                              | -                                                                                               | 3.1.23<br>3.1.23                                                                                         |
| 60 95                                                                                     |                                                                          | ollo,                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                 |                                                                                                          |

|            | 3NC1 401 3NC1 402 3NC1 403 3NC1 404 3NC1 405 3NC1 406 3NC1 410 3NC1 415 3NC1 420 3NC1 425 3NC1 430 3NC1 432 3NC1 440 3NC1 450  3NC1 504 3NC1 506 3NC1 516 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | Rated voltage V <sub>n</sub> AC  V  660 660 660 660 690 690 690 690 690 69 | DC<br>V<br>700 1)<br>700 1) | Rated current  In A  1 2 3 4 5 6 10 15 20 25 30 32 40 50 | Clearing I <sup>2</sup> t value  I <sup>2</sup> t <sub>A</sub> at 1.0 x V <sub>n</sub> A <sup>2</sup> s  11 - 22 22 22 60 130 150 800 980 1800 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                           | ; Co                                                         | Z /                                                                        |                                                                                                                                                               | 0                                                        |                                                                                                                                                |
|            | 3NC2 220<br>3NC2 225<br>3NC2 232<br>3NC2 240<br>3NC2 250<br>3NC2 263<br>3NC2 280<br>3NC2 200                                                              | 0.06<br>0.06<br>0.00<br>1.06<br>0.06<br>0.06<br>0.06<br>0.06 | 690<br>690<br>690<br>690<br>690<br>690<br>690                              | 700 1<br>700 1<br>700 1<br>700 1<br>700 1<br>700 1<br>700 1<br>700 1<br>700 1                                                                                 | 20<br>25<br>32<br>40<br>50<br>63<br>80                   | 370<br>560<br>850<br>1350<br>1120<br>2700<br>5100                                                                                              |
| Table 20-6 | ( <b>91</b> ), for Guide Nos. and                                                                                                                         | d File Nos. of the App                                       | proval, refer to Se                                                        | ection 1 'Applica                                                                                                                                             | tions and Standards'                                     | ,                                                                                                                                              |

Talling No. 19, 60)

| Pre-arcing<br>I <sup>2</sup> t value                                       | Power loss                                                              | Utilization category                     | Cyclic load<br>factor<br>WL               | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620)                                                                                                 | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653) | Characteris-<br>tics and<br>dimension<br>drawings                                                                                        |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| A <sup>2</sup> s                                                           | W                                                                       |                                          |                                           |                                                                                                                                                                              | mm                                                                                        | Section                                                                                                                                  |
| -<br>-<br>-<br>1.6<br>-<br>3.6<br>10<br>26<br>44<br>58<br>95<br>110<br>220 | 5<br>3<br>2.5<br>-<br>1.5<br>1.5<br>4<br>5.5<br>6<br>7<br>9<br>7.6<br>8 | aR a | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 14 x 51<br>14 x 51 |                                                                                           | 3.1.24<br>3.1.24<br>3.1.24<br>3.1.24<br>3.1.24<br>3.1.24<br>3.1.25<br>3.1.25<br>3.1.25<br>3.1.25<br>3.1.25<br>3.1.25<br>3.1.25<br>3.1.25 |
| -<br>-<br>-                                                                | -                                                                       | gG<br>gG<br>gG                           |                                           | 14 x 51<br>14 x 51<br>14 x 51                                                                                                                                                | John John John John John John John John                                                   | 3.1.26<br>3.1.26<br>3.1.26                                                                                                               |
| 34<br>60<br>95<br>185<br>155<br>310<br>620<br>1250                         | 4.6<br>5.6<br>7<br>8.5<br>9.5<br>11<br>13.5                             | aR<br>aR<br>aR<br>aR<br>aR<br>aR<br>aR   | 3/0/20                                    | 22 x 58<br>22 x 58                                                                   | -<br>-<br>-<br>-<br>-                                                                     | 3.1.27<br>3.1.27<br>3.1.27<br>3.1.27<br>3.1.27<br>3.1.27<br>3.1.27<br>3.1.27                                                             |
|                                                                            | <                                                                       | 400                                      | 2 12                                      |                                                                                                                                                                              |                                                                                           |                                                                                                                                          |
| 1250                                                                       |                                                                         |                                          |                                           |                                                                                                                                                                              |                                                                                           |                                                                                                                                          |

#### 2.2 SITOR fuse links for special applications

|     | Order No.                                                                                   | Weight<br>kg              | Rated voltage $V_{\rm n}$ AC $V$ | DC<br>V | Rated current $I_{\rm n}$ | Clearing $I^2t$ value $I^2t_A$ at 1.0 x $V_n$ $A^2s$ |
|-----|---------------------------------------------------------------------------------------------|---------------------------|----------------------------------|---------|---------------------------|------------------------------------------------------|
| No. | 3NC5 531 <sup>1)</sup> 3NC5 838 <sup>1)</sup> 3NC5 840 <sup>1)</sup> 3NC5 841 <sup>1)</sup> | 0.67<br>1.2<br>1.4<br>1.2 | 800<br>1000<br>1000<br>800       |         | 350<br>800<br>600<br>630  | 260000<br>1728000<br>888000<br>888000                |
|     | 3NC7 327-2 <sup>2)</sup><br>3NC7 331-2 <sup>2)</sup>                                        | 0.7<br>0.7                | 680<br>680                       | -       | 250<br>350                | 635000<br>1430000                                    |
|     | 3NE3 525-5 <sup>3)</sup><br>3NE3 535-5 <sup>3)</sup>                                        | 0.7 0.7                   |                                  |         | 200<br>450                | 44000<br>395000                                      |
|     | 3NE4 117-5 <sup>4)</sup> 3NE4 121-5 <sup>4)</sup> 3NE4 146-5 <sup>4)</sup>                  | 0.28                      | 1000                             | D       | 50<br>100<br>170          | 1100<br>7400<br>60500                                |

Table

- 1) For rectifiers in electrolysis systems (these are screwed onto water-cooled busbars)
- Talloi, o 2) For traction feeder rectifiers

| Pre-arcing<br>I <sup>2</sup> t value<br>A <sup>2</sup> s<br>66000 | Power loss W 80   | Utilization category | Cyclic load<br>factor<br>WL | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653)<br>mm | Characteristics and dimension drawings  Section  3.2.3 |
|-------------------------------------------------------------------|-------------------|----------------------|-----------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 360000<br>185000<br>185000                                        | 170<br>150<br>145 | aR<br>aR<br>aR       | 0.9<br>0.9<br>0.9           | -                                                                            | -<br>-<br>-                                                                                     | 3.2.3<br>3.2.3<br>3.2.3                                |
| 244000<br>550000                                                  | 25<br>32          | aR<br>aR             | 0.9                         |                                                                              |                                                                                                 | 5.2.5<br>5.2.5                                         |
| 7150<br>64500                                                     | 50<br>90          | aR<br>aR             | 0.85<br>0.85                | 760                                                                          |                                                                                                 | 3.2.1<br>3.2.1                                         |
| 135<br>900<br>7370                                                | 20<br>35<br>43    | gR<br>aR<br>aR       | 0.85<br>0.85<br>0.85        |                                                                              | -<br>-<br>-                                                                                     | 3.2.1<br>3.2.1<br>3.2.1                                |
| Fac                                                               |                   |                      |                             |                                                                              |                                                                                                 |                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order No.                                                                                                                        | Weight<br>kg                         | Rated voltage $V_n$ AC $V$      | DC<br>V          | Rated current  I <sub>n</sub> A | Clearing $I^2t$ value $I^2t_A$ at 1.0 x $V_n$ $A^2s$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------|---------------------------------|------------------------------------------------------|
| The state of the s | 3NE4 327-6B <sup>1)</sup> 3NE4 330-6B <sup>1)</sup> 3NE4 333-6B <sup>1)</sup> 3NE4 334-6B <sup>1)</sup> 3NE4 337-6 <sup>1)</sup> | 0.65<br>0.65<br>0.65<br>0.65<br>0.65 | 800<br>800<br>800<br>800<br>800 | -<br>-<br>-<br>- | 250<br>315<br>450<br>500<br>710 | 29700<br>60700<br>191000<br>276000<br>923000         |
| Francisco de la constante de l | 3NE6 437 <sup>2)</sup> 3NE6 444 <sup>2)</sup> 3NE9 440-6 <sup>2)</sup> 3NE9 450 <sup>2)</sup>                                    | 1.0<br>1.1<br>1.0<br>1.0             | 900<br>900<br>600<br>600        | -<br>-<br>-      | 710<br>900<br>850<br>1250       | 620000<br>1920000<br>2480000<br>2480000              |
| The Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3NE6 437-7 <sup>3)</sup><br>3NE9 450-7 <sup>3)</sup>                                                                             | 1.0                                  | 900                             |                  | 710<br>1258                     | 620000<br>2480000                                    |

**Table** 24-8

1) For SITOR thyristor sets 6QG12

1) For SITOR thyristor sets 6QG12
2) For air-cooled rectifiers in electrolysis systems
3) For rectifiers in electrolysis systems (these are screwed onto water-cooled bushars)

| Pre-arcing<br>I <sup>2</sup> t value<br>A <sup>2</sup> s | Power loss                      | Utilization category       | Cyclic load<br>factor<br>WL          | Size according<br>to IEC/EN 60 269-2-1<br>or VDE 0636/201<br>(or DIN 43 620) | Inside caliper<br>according<br>to IEC/EN 60 269-4-1<br>or VDE 0636/401<br>(or DIN 43 653)<br>mm | Characteristics and dimension drawings  Section |
|----------------------------------------------------------|---------------------------------|----------------------------|--------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 3600<br>7400<br>29400<br>42500<br>142000                 | 105<br>120<br>140<br>155<br>155 | aR<br>aR<br>aR<br>aR<br>aR | 0.85<br>0.85<br>0.85<br>0.85<br>0.95 | -<br>-<br>-<br>-                                                             | -<br>-<br>-<br>-                                                                                | 3.2.2<br>3.2.2<br>3.2.2<br>3.2.2<br>3.2.2       |
| 100000<br>400000<br>400000<br>400000                     | 150<br>170<br>85<br>210         | gR<br>aR<br>gR<br>aR       | 0.9<br>0.9<br>1<br>0.9               | -<br>-<br>-                                                                  |                                                                                                 | 3.2.4<br>2.2.4<br>2.2.4<br>3.2.4                |
| 100000<br>400000                                         | 150<br>210                      | aR<br>aR                   | 0.9                                  | 760                                                                          | Jolo.                                                                                           | 3.2.4<br>3.2.4                                  |
|                                                          |                                 |                            | 16.0                                 | alio                                                                         | ~                                                                                               |                                                 |
|                                                          |                                 |                            |                                      |                                                                              |                                                                                                 |                                                 |

#### 2.3 Accessories for I.v.h.b.c fuses

| Permissi                                            | ble loadi                                                                                                                                           | ng and req                                         | uired connection o                                                           | cross-sections whe                        | en used in                             | I.v.h.b.c fuse ba          | ses and switch o         | disconnec                              | tors                         |                                        |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------|--------------------------|----------------------------------------|------------------------------|----------------------------------------|--|
| SITOR<br>fuse link                                  |                                                                                                                                                     | Rated<br>current                                   | Required cross-section of cables/busbars                                     | l.v.h.b.c. fuse ba                        | se                                     | Suitable<br>puller         | Fuse switch disconnector |                                        | Switch disconr<br>with fuses | nector                                 |  |
| Order No                                            | 0.                                                                                                                                                  | I <sub>n</sub>                                     | mm <sup>2</sup> Cu                                                           | Order No.                                 | max.<br>current<br>A                   | Order No.                  | Order No.                | max.<br>current<br>A                   | Order No.                    | max.<br>current<br>A                   |  |
| 3NC2 4:<br>3NC2 4:<br>3NC2 4:<br>3NC2 4:<br>3NC2 4: | 23/-3<br>25/-3<br>27/-3<br>28/-3<br>31/-3                                                                                                           | 150<br>200<br>250<br>300<br>350<br>400             | 70<br>95<br>120<br>185<br>240<br>240                                         | 3NH3 430 <sup>2) 3)</sup>                 | 150<br>190<br>240<br>285<br>330<br>400 | 3NX1 011                   | 3NP5 4                   | 145<br>180<br>225<br>255<br>330<br>400 | 3KL61 30                     | 145<br>180<br>225<br>255<br>330<br>400 |  |
| 3NC8 4:<br>3NC8 4:<br>3NC8 4:<br>3NC8 4:<br>3NC8 4: | 25/-3<br>27/-3<br>31/-3<br>34/-3                                                                                                                    | 150<br>200<br>250<br>350<br>500                    | 70<br>95<br>120<br>240<br>2 x 150                                            |                                           | 135<br>180<br>250<br>315<br>450        |                            |                          | 135<br>180<br>225<br>300<br>425        | COLL                         | 135<br>180<br>225<br>300<br>425        |  |
| <b>Table</b> 26-9                                   | swit<br>2) The<br>rate                                                                                                                              | ch disconne<br>maximum<br>d current I <sub>n</sub> | ing pollution degrectors (designed focurrents are valid .  71), for Guide No | or degree of pollu<br>for natural air cod | tion 3) is oling. With                 | 1000 V<br>I forced cooling | v≥1 m s the fus          | ses can be                             | used with                    | nd 3NP                                 |  |
|                                                     | rated current I <sub>n</sub> .  3) © recognized (NL), for Guide Nos. and File Nos. of the Approval, refer to Section 1 'Applications and Standards' |                                                    |                                                                              |                                           |                                        |                            |                          |                                        |                              |                                        |  |

| Permissible loadir<br>SITOR<br>fuse link             | Rated<br>current         | Required<br>cross-section of<br>cables/busbars               | l.v.h.b.c. fuse base                 |                          | Suitable Fuse switc                     |                   |                          |                       | ector                    |
|------------------------------------------------------|--------------------------|--------------------------------------------------------------|--------------------------------------|--------------------------|-----------------------------------------|-------------------|--------------------------|-----------------------|--------------------------|
| Order No.                                            | I <sub>n</sub>           | mm <sup>2</sup> Cu                                           | Order No.                            | max.<br>current<br>A     | Order No.                               | Order No.         | max.<br>current<br>A     | Order No.             | max.<br>current<br>A     |
| 3NE1 813-0<br>3NE1 814-0<br>3NE1 815-0<br>3NE1 803-0 | 16<br>20<br>25<br>35     | 1.5<br>2.5<br>4<br>6                                         | 3NH3 030 <sup>1)</sup> /<br>3NH4 030 | 16<br>20<br>25<br>35     | 3NX1 011                                | 3NP4 0/<br>3NP5 0 | 16<br>20<br>25<br>35     | 3KL50 30/<br>3KM50 30 | 16<br>20<br>25<br>35     |
| 3NE1 802-0<br>3NE1 817-0<br>3NE1 818-0               | 40<br>50<br>63           | 10<br>10<br>16                                               |                                      | 40<br>50<br>63           |                                         |                   | 40<br>50<br>63           | 2                     | 40<br>50<br>63           |
| 3NE1 820-0                                           | 80                       | 25                                                           |                                      | 80                       |                                         |                   | 80                       | 3KL52 30/<br>3KM52 30 | 80                       |
| 3NE1 021-0<br>3NE1 022-0                             | 100<br>125               | 35<br>50                                                     |                                      | 100<br>125               |                                         | 3NP4 0/<br>3NP5 0 | 100<br>125               | •                     | 100<br>125               |
| 3NE1 224-0<br>3NE1 225-0<br>3NE1 227-0               | 160<br>200<br>250        | 70<br>95<br>120                                              | 3NH3 230 <sup>1)</sup> /<br>3NH4 230 | 160<br>200<br>250        | SA                                      | 3(P4)2/<br>3(P5)2 | 160<br>200<br>250        | 3KL55 30/<br>3KM55 30 | 160<br>200<br>250        |
| 3NE1 230-0<br>3NE1 331-0<br>3NE1 332-0               | 315<br>350<br>400        | 2 x 70<br>2 x 95<br>2 x 95                                   | 3NH3 330 <sup>1)</sup>               | 3 5<br>350<br>100        | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | 3NP5 3            | 315<br>350<br>400        | 3KL57 30/<br>3KM57 30 | 315<br>350<br>400        |
| 3NE1 333-0<br>3NE1 334-0<br>3NE1 435-0<br>3NE1 436-0 | 450<br>500<br>560<br>630 | 2 x 120<br>2 x 120<br>2 x 150<br>2 x 185                     | 3NH3 430 <sup>1)</sup>               | 450<br>500<br>560<br>530 | 3                                       | 3NP5 4            | 450<br>500<br>560<br>630 | 3KL61 30              | 450<br>500<br>560<br>630 |
| 3NE1 437-0<br>3NE1 438-0<br>3NE1 437-1<br>3NE1 438-1 | 710<br>800<br>710<br>800 | 2 x (50 x 5)<br>2 x (50 x 5)<br>2 x (50 x 5)<br>2 x (50 x 5) | 3NH3 130                             | 710<br>800<br>690<br>750 | d                                       | 3NP5 4<br>3NP5 4  | 710<br>800<br>690<br>750 | 3KL62                 | 710<br>800<br>710<br>800 |
| 3NE1 022-2                                           | 125                      | O50                                                          | 3NH3 030/<br>3NH4 030                | 12)                      |                                         | 3NP4 0/<br>3NP5 0 | 125                      | 3KL52/<br>3KM52       | 125                      |
| 3NE1 224-2<br>3NE1 225-2<br>3NE1 227-2               | 160<br>200<br>250        | 70<br>95<br>120                                              | 3NH3 230<br>3NH4 230                 | 160<br>200<br>250        |                                         | 3NP4 2/<br>3NP5 2 | 160<br>200<br>250        | 3KL55<br>3KM55        | 145<br>180<br>220        |
|                                                      |                          | 2 x 70<br>2 x 95<br><b>U</b> ), for Guide Nos.               |                                      | 315<br>350<br>the Appro  | oval,                                   | 3NP5 3            | 315<br>350               | 3KL57/<br>3KM57       | 280<br>300               |
| 27-10 refer                                          | to Section               | P'Applications up                                            | d Standards'                         |                          |                                         |                   |                          |                       |                          |
|                                                      | •                        |                                                              |                                      |                          |                                         |                   |                          |                       |                          |

| Permissible loading and required connection cross-sections when used in l.v.h.b.c fuse bases and switch disconnectors |                                          |                                                              |                                      |                                          |                                       |                                  |                                         |                              |                                         |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------|------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|--|
| SITOR<br>fuse link                                                                                                    | Rated<br>current                         | Required cross-section of cables/busbars                     | I.v.h.b.c. fuse b                    | I.v.h.b.c. fuse base                     |                                       | Fuse switch disconnector         |                                         | Switch disconr<br>with fuses | nector                                  |  |
| Order No.                                                                                                             | I <sub>n</sub>                           | mm <sup>2</sup> Cu                                           | Order No.                            | max.<br>current<br>A                     | Order No.                             | Order No.                        | max.<br>current<br>A                    | Order No.                    | max.<br>current<br>A                    |  |
| 3NE1 333-2<br>3NE1 334-2<br>3NE1 435-2<br>3NE1 436-2                                                                  | 450<br>500<br>560<br>630                 | 2 x 120<br>2 x 120<br>2 x 150<br>2 x 185                     | 3NH3 430                             | 450<br>500<br>560<br>630                 | 3NX1 011                              | 3NP5 4                           | 450<br>500<br>560<br>625                | 3KL61                        | 450<br>500<br>560<br>615                |  |
| 3NE1 447-2<br>3NE1 437-2<br>3NE1 438-2<br>3NE1 448-2                                                                  | 670<br>710<br>800<br>850                 | 2 x (40 x 5)<br>2 x (40 x 5)<br>2 x (50 x 5)<br>2 x (30 x 8) |                                      | 670<br>710<br>800<br>850                 |                                       | 3NP5 4<br>3NP5 4<br>3NP5 4       | 655<br>685<br>770<br>820                | 3KL62                        | 670<br>700<br>760<br>790                |  |
| 3NE8 015-1<br>3NE8 003-1<br>3NE8 017-1<br>3NE8 018-1                                                                  | 25<br>35<br>50<br>63                     | 4<br>6<br>10<br>16                                           | 3NH3 030 <sup>1)</sup> /<br>3NH4 030 | 25<br>35<br>50<br>63                     |                                       | 3NP4 0/<br>3NP5 0                | 25<br>35<br>45<br>55                    | 3KL50 30<br>3K /150 30       | 25<br>35<br>45<br>55                    |  |
| 3NE8 020-1<br>3NE8 021-1<br>3NE8 022-1<br>3NE8 024-1                                                                  | 80<br>100<br>125<br>160                  | 25<br>35<br>50<br>70                                         |                                      | 80<br>100<br>125<br>160                  | S                                     | 0                                | 70<br>85<br>100<br>130                  | 3KL52 30/<br>3KM52 30        | 70<br>85<br>100<br>130                  |  |
| 3NE4 327-0B<br>3NE4 330-0B                                                                                            | 250<br>315                               | 120<br>240                                                   | 3NH3 330 <sup>2)</sup>               | 2.0                                      | 1                                     | 3NP5 3                           | 190<br>250                              | 3KL57 30/<br>3KM57 30        | 170<br>225                              |  |
| 3NE4 333-0B<br>3NE4 334-0B                                                                                            | 450<br>500                               | 40 x 8<br>40 x 8                                             | 3NH3 430 <sup>2)</sup>               | 425<br>475                               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 3NP5 4                           | 420<br>450                              | 3KL61 30 <sup>1)</sup>       | 370<br>425                              |  |
| 3NE4 337                                                                                                              | 710                                      | 50 x 10                                                      |                                      | 630                                      | ) (                                   |                                  | 600                                     | 3KL62                        | 600                                     |  |
| 3NE4 101<br>3NE4 102<br>3NE4 117<br>3NE4 118<br>3NE4 120<br>3NE4 121<br>3NE4 121                                      | 32<br>40<br>50<br>63<br>80<br>100<br>125 | 6<br>10<br>10<br>16<br>25<br>35<br>50                        | 3NH3 120 <sup>2</sup> /<br>3NH4 230  | 32<br>40<br>50<br>63<br>80<br>100<br>125 | on chi                                | 3NP4 2 <sup>1)</sup> /<br>3NP5 2 | 32<br>40<br>50<br>63<br>80<br>95<br>120 | 3KL55 30/<br>3KM55 30        | 32<br>40<br>50<br>63<br>80<br>95<br>120 |  |
| 3NE4 122<br>3NE4 124                                                                                                  | 125<br>160                               | 70                                                           | رم                                   | 160                                      |                                       |                                  | 120<br>150                              |                              | 120<br>150                              |  |

**Table** 28-11

<sup>1)</sup> When maintaining pollution degree 2 according to DIN VDE 0660 Part 100, the rated insulation voltage of 3KL, 3KM and 3NP switch disconnectors (designed for degree of pollution 3) is 1000 V

2) @ recognizer (%), for Guide Nos. and File Nos. of the Approval, refer to Section 1 'Applications and Standards'

| Permissible loadin                                                                                                                                                                                                                                                                                                  | ng and requ                     | ired connection cr                       | ross-sections whe                    | en used in                      | I.v.h.b.c fuse ba  | ses and switch                   | disconnec                      | tors                         |                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------|---------------------------------|--------------------|----------------------------------|--------------------------------|------------------------------|--------------------------------|--|
| SITOR<br>fuse link                                                                                                                                                                                                                                                                                                  | Rated<br>current                | Required cross-section of cables/busbars | l.v.h.b.c. fuse ba                   | ase                             | Suitable<br>puller | Fuse switch disconnector         |                                | Switch disconr<br>with fuses | nector                         |  |
| Order No.                                                                                                                                                                                                                                                                                                           | I <sub>n</sub>                  | mm <sup>2</sup> Cu                       | Order No.                            | max.<br>current<br>A            | Order No.          | Order No.                        | max.<br>current<br>A           | Order No.                    | max.<br>current<br>A           |  |
| 3NE3 221<br>3NE3 222<br>3NE3 224<br>3NE3 225<br>3NE3 227                                                                                                                                                                                                                                                            | 100<br>125<br>160<br>200<br>250 | 35<br>50<br>70<br>95<br>120              | 3NH3 230 <sup>2)</sup> /<br>3NH4 230 | 100<br>125<br>160<br>200<br>250 | 3NX1 011           | 3NP4 2 <sup>1)</sup> /<br>3NP5 2 | 90<br>110<br>140<br>175<br>210 | 3KL55 30/<br>3KM55 30        | 90<br>110<br>140<br>175<br>210 |  |
| 3NE3 230-0B<br>3NE3 231<br>3NE3 232-0B<br>3NE3 233                                                                                                                                                                                                                                                                  | 315<br>350<br>400<br>450        | 185<br>240<br>240<br>2 x 150             | 3NH3 330 <sup>2)</sup>               | 305<br>335<br>380<br>425        |                    | 3NP5 3                           | 285<br>310<br>330<br>360       | 3KL57 30/<br>3KM57 30        | 240<br>265<br>290<br>320       |  |
| 3NE3 332-0B<br>3NE3 333<br>3NE3 334-0B<br>3NE3 335                                                                                                                                                                                                                                                                  | 400<br>450<br>500<br>560        | 240<br>2 x 150<br>2 x 150<br>2 x 185     | 3NH3 430 <sup>2)</sup>               | 400<br>450<br>500<br>560        |                    | 3NP5 4                           | 340<br>380<br>450<br>510       | 3K (61 30 <sup>1)</sup>      | 340<br>380<br>440<br>500       |  |
| 3NE3 336<br>3NE3 337-8<br>3NE3 338-8<br>3NE3 340-8                                                                                                                                                                                                                                                                  | 630<br>710<br>800<br>900        | 2 x 185<br>2 x 200<br>2 x 200<br>2 x 240 |                                      | 630<br>680<br>700<br>750        | 50 16              | 5                                | 580<br>630<br>630<br>630       | 3KL62                        | 570<br>640<br>720<br>800       |  |
| 1) When maintaining pollution degree 2 according to D.N VDE 0660 Par 100, the rated it sulation voltage of 3KL, 3KM and 3NP switch disconnectors (designed for degree of pollution 3) is 1000 V 2) ® recognized ( ), for Guide Nos. and File Nos. or the Approval, refer to Section 1 / Aprlications and Standards' |                                 |                                          |                                      |                                 |                    |                                  |                                |                              |                                |  |
| To                                                                                                                                                                                                                                                                                                                  |                                 |                                          |                                      |                                 |                    |                                  |                                |                              |                                |  |

### 2.4 Accessories for cylindrical fuses

| Permissible                                                                                                                                              | Permissible load and required connection cross-sections when using in cylindrical fuse bases and switch disconnectors |                                                                      |               |                                                                            |               |                                                 |               |                                                 |              |                               |                                                             |              |                                                                            |              |                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|----------------------------------------------------------------------------|---------------|-------------------------------------------------|---------------|-------------------------------------------------|--------------|-------------------------------|-------------------------------------------------------------|--------------|----------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|
| SITOR<br>fuse link                                                                                                                                       | Rated<br>current                                                                                                      | Required<br>connection<br>cross-section                              | Cylindrica    | Cylindrical fuse base                                                      |               |                                                 |               |                                                 |              | Cylindrical fuse disconnector |                                                             |              |                                                                            |              |                                                                            |
|                                                                                                                                                          | I <sub>n</sub>                                                                                                        |                                                                      | 1-phase       | I <sub>max</sub>                                                           | 2-phase       | I <sub>max</sub>                                | 3-phase       | I <sub>max</sub>                                |              | 1-phase                       | I <sub>max</sub>                                            | 2-phase      | I <sub>max</sub>                                                           | 3-phase      | I <sub>max</sub>                                                           |
| Order No.                                                                                                                                                | Α                                                                                                                     | mm <sup>2</sup> Cu                                                   | Order<br>No.  | Α                                                                          | Order<br>No.  | Α                                               | Order<br>No.  | Α                                               | Order<br>No. | Order<br>No.                  | Α                                                           | Order<br>No. | Α                                                                          | Order<br>No. | A                                                                          |
| 3NC1 003<br>3NC1 006<br>3NC1 008<br>3NC1 010<br>3NC1 012<br>3NC1 016<br>3NC1 020<br>3NC1 025<br>3NC1 032                                                 | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>25<br>32                                                                       | 1<br>1<br>1<br>1.5<br>1.5<br>2.5<br>2.5<br>4<br>6                    | 3NC1<br>038-1 | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>25<br>32                            | 3NC1<br>038-2 | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>24<br>28 | 3NC1<br>038-3 | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>24<br>28 | 3NC1<br>000  | 3NC1<br>091                   | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>25<br>32             | 3NC1<br>092  | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>25<br>30                            | 3NC1<br>093  | 3<br>6<br>8<br>10<br>12<br>16<br>20<br>25<br>29                            |
| 3NC1 103<br>3NC1 105                                                                                                                                     | 3<br>5                                                                                                                | 1                                                                    |               | 3<br>5                                                                     |               | 3 5                                             |               | 3                                               |              | Q                             | 3                                                           | 0            | 3<br>5                                                                     |              | 3<br>5                                                                     |
| 3NC1 401<br>3NC1 402<br>3NC1 403<br>3NC1 404<br>3NC1 406<br>3NC1 410<br>3NC1 415<br>3NC1 420<br>3NC1 425<br>3NC1 430<br>3NC1 432<br>3NC1 440<br>3NC1 450 | 1<br>2<br>3<br>4<br>5<br>6<br>10<br>15<br>20<br>25<br>30<br>32<br>40<br>50                                            | 1<br>1<br>1<br>1<br>1<br>1<br>1.5<br>1.5<br>2.5<br>4<br>6<br>6<br>10 | 3NC1<br>451-1 | 1<br>2<br>3<br>4<br>5<br>6<br>10<br>15<br>20<br>25<br>30<br>32<br>40<br>50 | ě Č           | 32,00                                           | 5             |                                                 |              | NC1<br>491                    | 4<br>5<br>6<br>10<br>15<br>20<br>25<br>28<br>31<br>38<br>48 | 3NC1<br>492  | 1<br>2<br>3<br>4<br>5<br>6<br>10<br>15<br>20<br>24<br>27<br>30<br>37<br>46 | 3NC1<br>493  | 1<br>2<br>3<br>4<br>5<br>6<br>10<br>15<br>20<br>23<br>25<br>30<br>36<br>44 |
| 3NC1 504<br>3NC1 506<br>3NC1 516<br>3NC2 220<br>3NC2 225<br>3NC2 232                                                                                     | 4<br>6<br>16<br>20<br>25<br>32                                                                                        | 1<br>1<br>2.5<br>2.5                                                 | BNC2<br>258-1 | 4<br>6<br>16<br>20<br>25<br>32                                             | 2             | (<br>(<br>()                                    | 9             |                                                 |              | 3NC2<br>291                   | 4<br>6<br>16<br>20<br>25<br>32                              | 3NC2<br>292  | 4<br>6<br>16<br>20<br>25<br>32                                             | 3NC2<br>293  | 4<br>6<br>16<br>20<br>25<br>32                                             |
| 3NC2 240<br>3NC2 250<br>3NC2 263<br>3NC2 280<br>3NC2 200                                                                                                 | 40<br>50<br>63<br>80<br>100                                                                                           | 10<br>16<br>25<br>35                                                 | 60            | 40<br>50<br>63<br>80<br>100                                                | 9             |                                                 |               |                                                 |              |                               | 40<br>50<br>60<br>74<br>95                                  |              | 39<br>48<br>58<br>71<br>90                                                 |              | 38<br>46<br>56<br>69<br>85                                                 |
| <b>Table</b> 30-13                                                                                                                                       | <                                                                                                                     | 5/                                                                   | 2             | 0                                                                          |               |                                                 |               |                                                 |              |                               |                                                             |              |                                                                            |              |                                                                            |

tancial 1533 @ Wandranand.com

Lanchan 1533 @ Wanchanahar Line 32 Aranchanahar Lin

# **Characteristics** and Dimension Drawings



## **Characteristics**

#### 3.1 SITOR fuse links

Fused switch disconnector

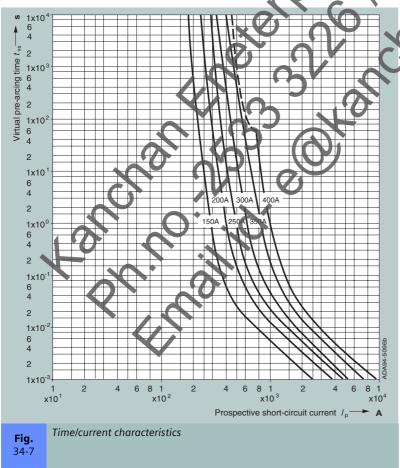
**Table** 

34-14

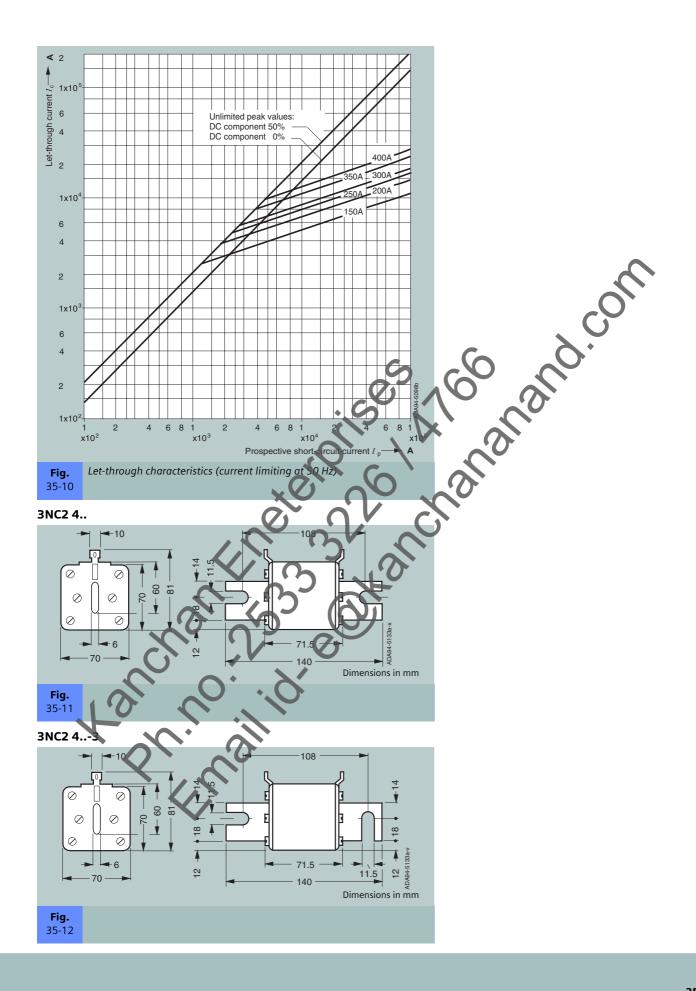
Switch disconnector with fuses

**3.1.1 3NC2 4..** (IEC 60 269-2-1, Size 3), **3NC2 4..-3** (IEC 60 269-4-1, Size 3/110) <sup>1)</sup>

| Order No.                                                                                                                                                                                                                                                                             |                                                          | 3NC2 423<br>3NC2 423-3                                                | 3NC2 425<br>3NC2 425-3                                                 | 3NC2 427<br>3NC2 427-3                                                 | 3NC2 428<br>3NC2 428-3                                                  | 3NC2 431<br>3NC2 431-3                                                  | 3NC2 432<br>3NC2 432-3                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Utilization category (IEC 60 269)                                                                                                                                                                                                                                                     |                                                          | gR                                                                    | gR                                                                     | gR                                                                     | gR                                                                      | gR                                                                      | aR                                                                        |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 500<br>150 <sup>2)</sup><br>7000<br>33000<br>26<br>35<br>0.85<br>0.95 | 500<br>200 <sup>2)</sup><br>13600<br>64000<br>25<br>40<br>0.85<br>0.95 | 500<br>250 <sup>2)</sup><br>21000<br>99000<br>30<br>50<br>0.85<br>0.95 | 500<br>300 <sup>2)</sup><br>28000<br>132000<br>40<br>65<br>0.85<br>0.95 | 500<br>350 <sup>2)</sup><br>53000<br>249000<br>35<br>60<br>0.85<br>0.95 | 500<br>400 <sup>2)</sup><br>83 000<br>390 000<br>30<br>50<br>0.85<br>0.95 |
| Accessories 3) Fuse base, 1-pole Fuse puller                                                                                                                                                                                                                                          |                                                          | 3NH3 430<br>3NX1 011                                                  |                                                                        | . (                                                                    |                                                                         | 9.                                                                      |                                                                           |


1) Envelope dimension and pullers correspond to IEC 60169 2-1; however, contact blades are slotted according to IEC 60269-4-1


2) Cooling air velocity 1 m/s. For natural air cooling, reduced by 5 %

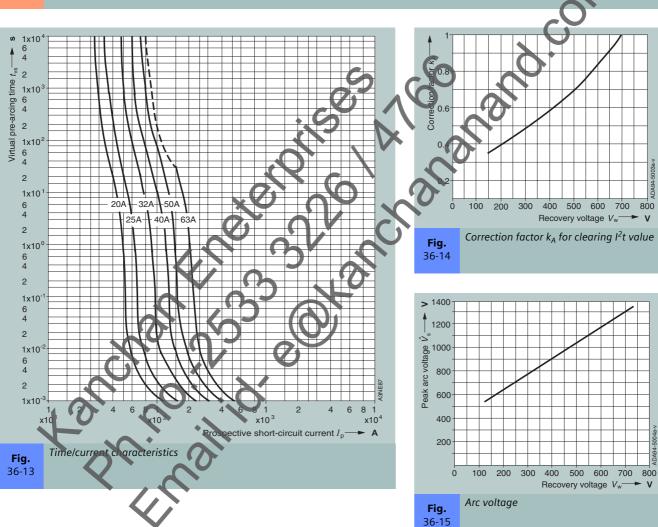

3NP54

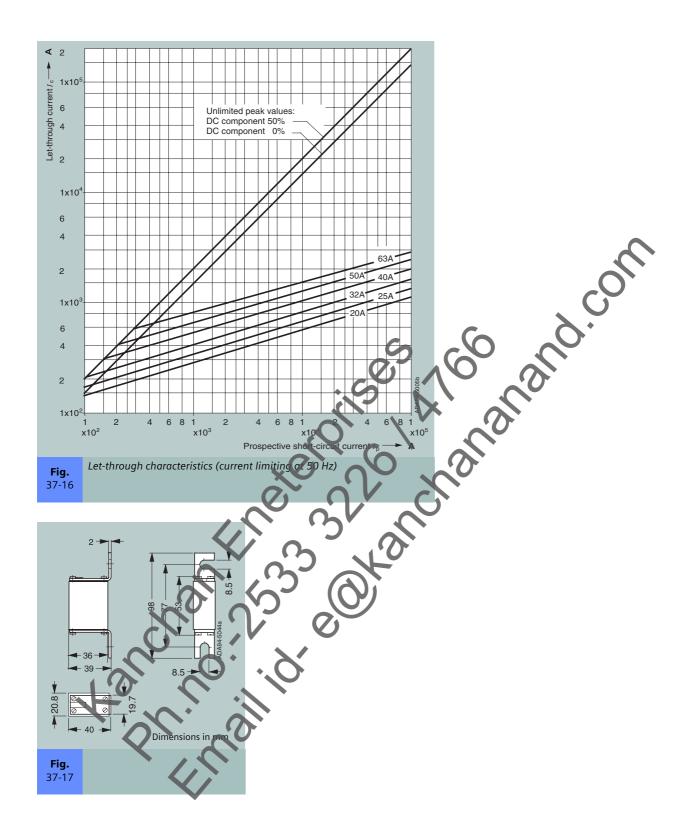
3KL61 30-1.B0

3) Maximum current and minimum required connection cross-section when using fuse bases and switch disconnectors, refer to Section 2.3







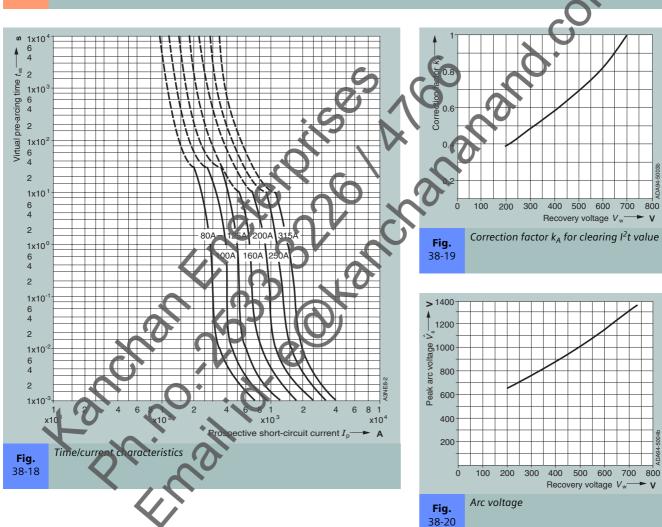


### **3.1.2 3NE8 7..-1** (IEC 60 269-4-1, Size 000/80)

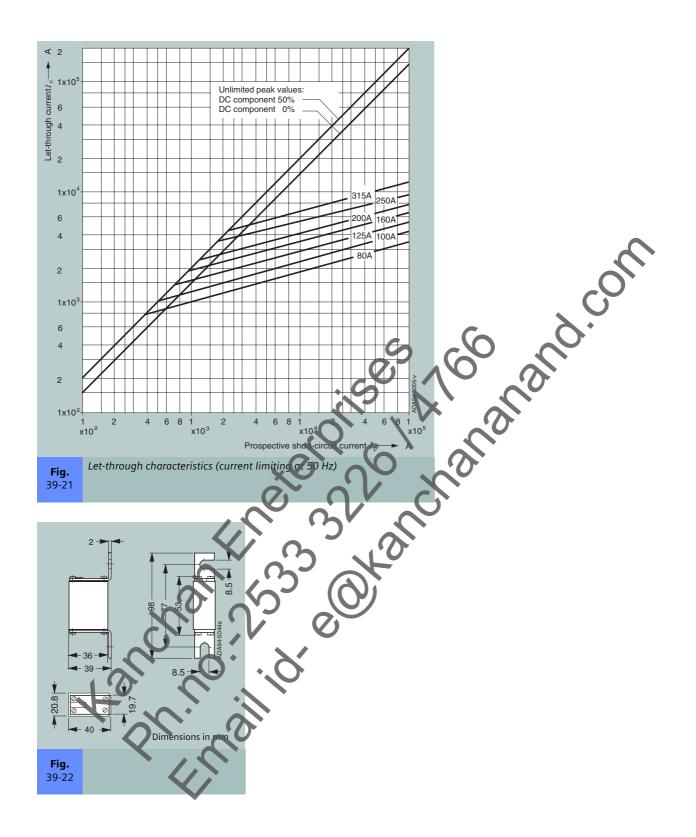


| Order No.                                                                                            |                            | 3NE8 714-1       | 3NE8 715-1       | 3NE8 701-1        | 3NE8 702-1        | 3NE8 717-1        | 3NE8 718-1         |
|------------------------------------------------------------------------------------------------------|----------------------------|------------------|------------------|-------------------|-------------------|-------------------|--------------------|
| Utilization category<br>(IEC 60 269)                                                                 |                            | gR               | gR               | gR                | gR                | gR                | aR                 |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms) | V<br>A<br>A <sup>2</sup> s | 690<br>20<br>12  | 690<br>25<br>19  | 690<br>32<br>40   | 690<br>40<br>69   | 690<br>50<br>115  | 690<br>63<br>215   |
| Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)    | A <sup>2</sup> s<br>K      | 83<br>40         | 140<br>40        | 285<br>45         | 490<br>55         | 815<br>60         | 1550<br>70         |
| Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx.                             | W<br>kg                    | 7<br>0.9<br>0.13 | 9<br>0.9<br>0.13 | 10<br>0.9<br>0.13 | 12<br>0.9<br>0.13 | 15<br>0.9<br>0.13 | 16<br>0.95<br>0.13 |

**Table** 36-15







## **3.1.3 3NE8 7..-1** (IEC 60 269-4-1, Size 000/80)



| Order No.                                                                                                                                                                                                                                   | 3NE8 720-                                                                                        | 3NE8 721-1                                            | 3NE8 722-1                                             | 3NE8 724-1                                              | 3NE8 725-1                                              | 3NE8 727-1                                              | 3NE8 731-1                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                        | aR                                                                                               | aR                                                    | aR                                                     | aR                                                      | aR                                                      | aR                                                      | aR                                                          |
| Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$ | V 690<br>A 80<br>A <sup>2</sup> s 380<br>A <sup>2</sup> s 2700<br>K 80<br>W 18<br>0.9<br>kg 0.13 | 690<br>100<br>695<br>4950<br>75<br>19<br>0.95<br>0.13 | 690<br>125<br>1250<br>9100<br>80<br>23<br>0.95<br>0.13 | 690<br>160<br>2350<br>17000<br>100<br>31<br>0.9<br>0.13 | 690<br>200<br>4200<br>30000<br>120<br>36<br>0.9<br>0.13 | 690<br>250<br>7750<br>55000<br>125<br>42<br>0.9<br>0.13 | 690<br>315<br>12 000<br>85 500<br>150<br>54<br>0.85<br>0.13 |

**Table** 38-16



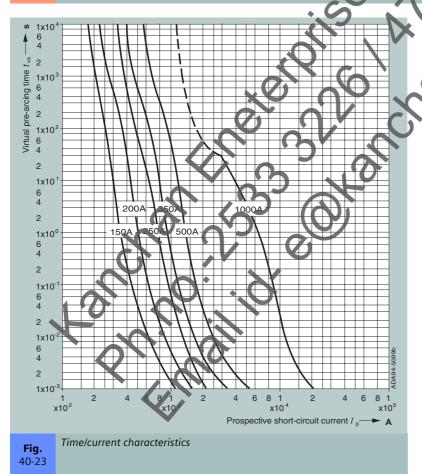


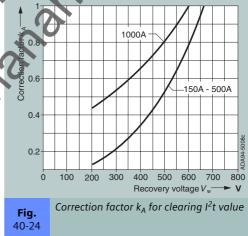
3.1.4 **3NC8 4..** (IEC 60 269-2-1, Size 3), **3NC8 4..-3** (IEC 60 269-4-1, Size 3/110) 1)

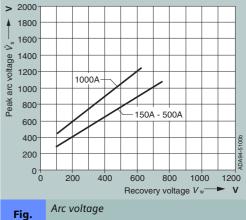
| Order No.                                                                                                   |                            | 3NC8 423<br>3NC8 423-3           | 3NC8 425<br>3NC8 425-3           | 3NC8 427<br>3NC8 427-3 | 3NC8 431<br>3NC8 431-3            | 3NC8 434<br>3NC8 434-3            | 3NC8 444-3            |
|-------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------|------------------------|-----------------------------------|-----------------------------------|-----------------------|
| Utilization category<br>(IEC 60 269)                                                                        |                            | gR                               | gR                               | gR                     | gR                                | gR                                | aR                    |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>$(t_{vs} = 1 \text{ ms})$ | V<br>A<br>A <sup>2</sup> s | 660<br>150 <sup>2)</sup><br>1100 | 660<br>200 <sup>2)</sup><br>2400 | 660<br>250<br>4400     | 660<br>350 <sup>2)</sup><br>11000 | 660<br>500 <sup>2)</sup><br>28000 | 600<br>1000<br>400000 |
| Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)           | A <sup>2</sup> s<br>K      | 17600<br>33                      | 38400<br>46                      | 70400<br>95            | 176000<br>65                      | 448000<br>75                      | 2480000<br>110        |
| Power dissipation at I <sub>n</sub> Cyclic load factor <i>WL</i> Weight, approx.                            | W<br>kg                    | 40<br>0.85<br>0.95               | 55<br>0.85<br>0.95               | 72<br>0.85<br>0.95     | 95<br>0.85<br>0.95                | 130<br>0.85<br>0.95               | 140<br>0.9<br>0.95    |

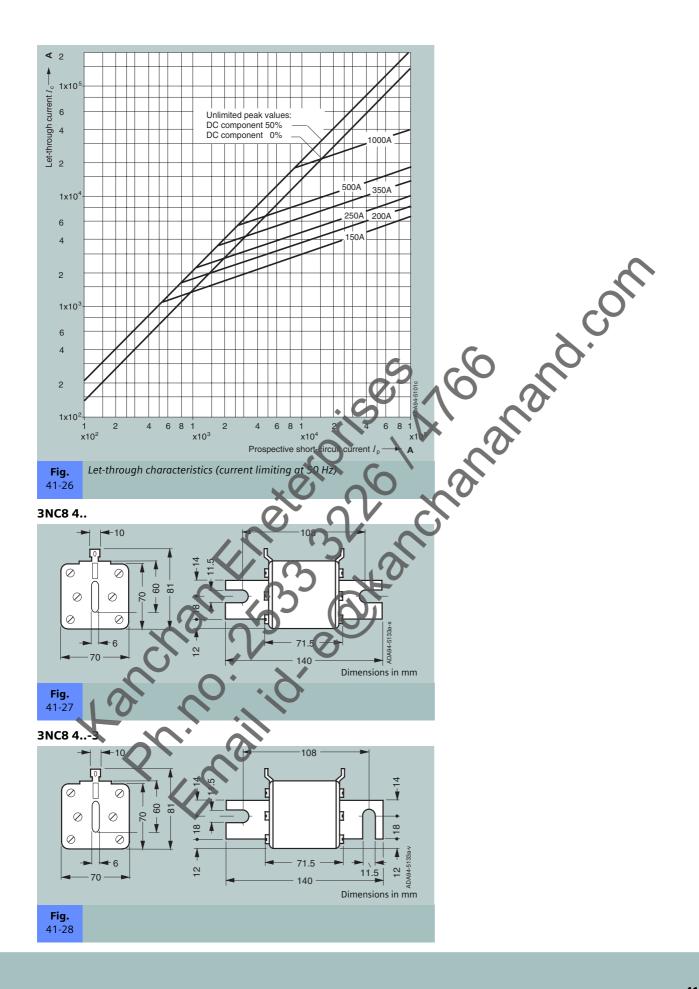
Accessories 3)

40-17


Fuse base, 1-pole 3NH3 430 Fuse puller 3NX1 011 3NP54 Fused switch disconnector Switch disconnector with fuses 3KL61 30-1AB0


NX1 011


1) Envelope dimension and pullers correspond to IEC 60269-2-1; however, contact blades are slotted according to IEC 60269-4-1


2) Cooling air velocity 1 m/s. For natural air cooling, reduced by 10 9

3) Maximum current and minimum required connection cross-section when using switch disconnectors, refer to Section 2.3



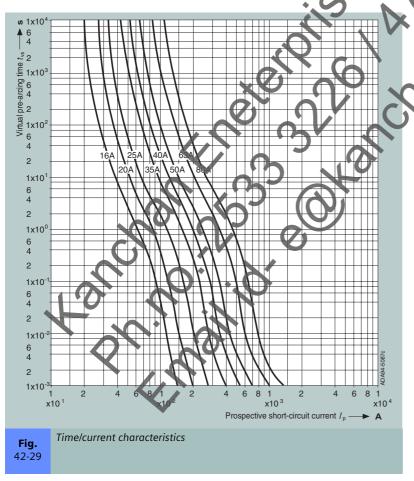


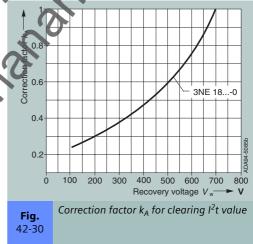




#### 3.1.5 **3NE1 8..-0** (IEC 60 269-2-1, Size 000)




| Order No.                                                                                                                                                                                                                                                                                   | 3NE1813-0 | 3NE1814-0                                          | 3NE1815-0                                          | 3NE1803-0                                            | 3NE1802-0                                            | 3NE1817-0        | 3NE1818-0                                            | 3NE1820-0                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------------------|--------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                        | gR/gS     | gR/gS                                              | gR/gS                                              | gR/gS                                                | gR/gS                                                | gR/gS            | gR/gS                                                | gR/gS                                                  |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body) 1)<br>Power dissipation at $I_n$ 1)<br>Cyclic load factor $WL$<br>Weight, approx. |           | 690<br>20<br>41<br>430<br>25<br>3.5<br>1.0<br>0.13 | 690<br>25<br>74<br>780<br>30<br>4.0<br>1.0<br>0.13 | 690<br>35<br>166<br>1700<br>35<br>5.0<br>1.0<br>0.13 | 690<br>40<br>295<br>3000<br>30<br>5.0<br>1.0<br>0.13 | 35<br>6.0<br>1.0 | 690<br>63<br>903<br>9000<br>40<br>7.0<br>1.0<br>0.13 | 690<br>80<br>1843<br>18000<br>40<br>8.0<br>1.0<br>0.13 |


Accessories 2) Fuse base, 1-pole 3NH3 030 Fuse base, 3-pole 3NH4 030 Fuse puller 3NX1 011 Fused switch disconnector 3NP40/3NP50 Switch disconnector with 3KL50 30-1.B00 fuses 3KM50 30-1.B00

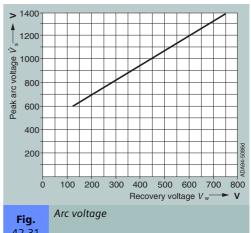
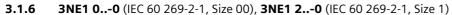

3KL5230-1.B00 3KM5230-1.B00


Table 42-18 1) Temperature rise and power dissipation when used in an l.v.h b c. fuse base


2) Minimum required connection cross-section when using the use base and switch disconnector, refer to Section 2.3













3KL57 30-1.B00

3KM57 30-1.B00

| Order No.                                                                                                                                                                                                                                                                                            |                                                          | 3NE1 021-0                                             | 3NE1 022-0                                             | 3NE1 224-0                                             | 3NE1 225-0                                               | 3NE1 227-0                                               | 3NE1 230-0                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                                 |                                                          | gR/gS                                                  | gR/gS                                                  | gR/gS                                                  | gR/gS                                                    | gR/gS                                                    | gR/gS                                                    |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1 \text{ ms}$ )<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body) 1)<br>Power dissipation at $I_n$ 1)<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 690<br>100<br>3100<br>33000<br>36<br>10<br>1.0<br>0.20 | 690<br>125<br>6000<br>63000<br>40<br>11<br>1.0<br>0.20 | 690<br>160<br>7400<br>60000<br>60<br>24<br>1.0<br>0.55 | 690<br>200<br>14500<br>100000<br>65<br>27<br>1.0<br>0.55 | 690<br>250<br>29500<br>200000<br>75<br>30<br>1.0<br>0.55 | 690<br>315<br>46100<br>310000<br>80<br>38<br>1.0<br>0.55 |
| Accessories <sup>2)</sup> Fuse base, 1-pole Fuse base, 3-pole Fuse puller Fused switch disconnector                                                                                                                                                                                                  |                                                          | 3NH3 030<br>3NH4 030<br>3NX1 011<br>3NP40              |                                                        | 3NH3 230<br>3NH4 230<br>3NP42                          |                                                          | ر (                                                      | 3NHS 330<br>3NP53                                        |

**Table** 44-19

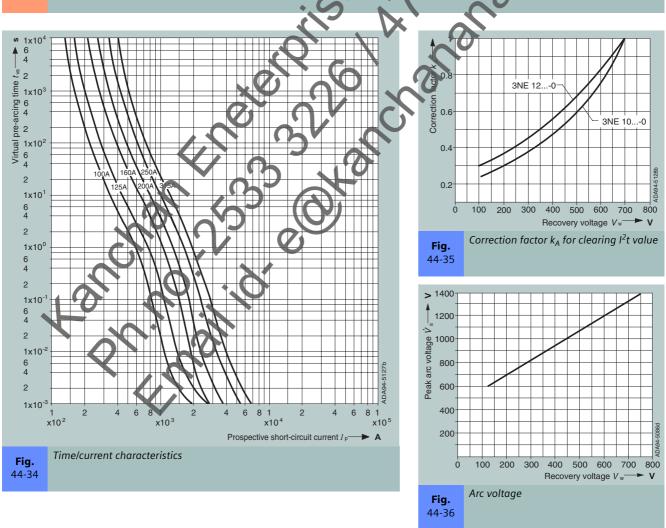
fuses

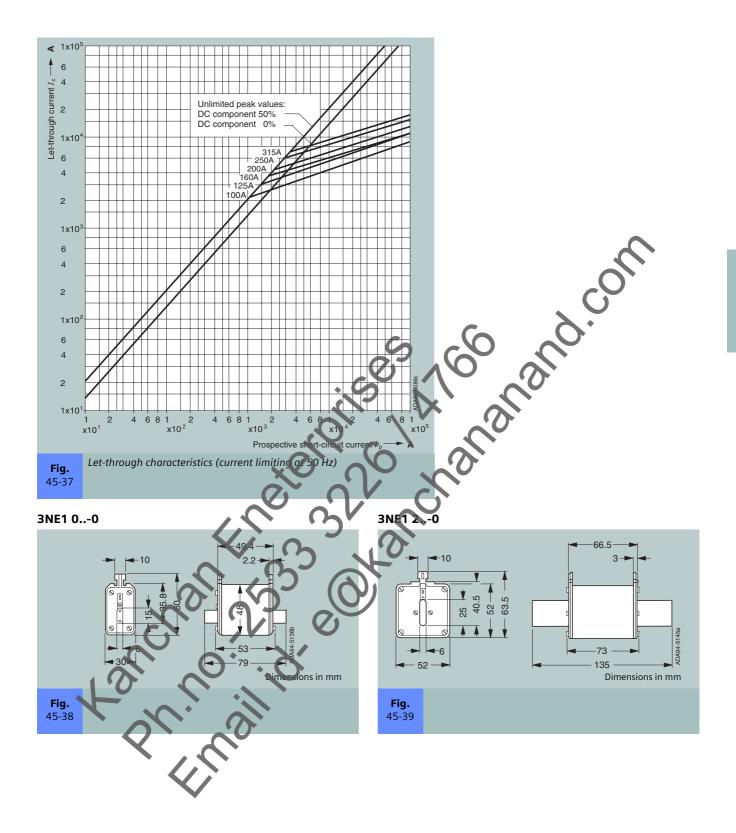
Switch disconnector with

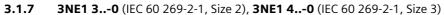
1) Temperature rise and power dissipation when used in an lash b.c. fuse bale

3NP50

3KL52 30-1.B00


3KM52 30-1.B00


2) Minimum required connection cross-section when using the fuse base and switch disconnector refer to Section 2.3


3NP52

3KL55 30-1.B00

3KM55 30-1.B00









| Order No.                                                                                                                                                                                                                                                                                   |                                                          | 3NE1<br>331-0                                           | 3NE1<br>332-0                                           | 3NE1<br>333-0                                            | 3NE1<br>334-0                                            | 3NE1<br>435-0                                              | 3NE1<br>436-0                                              | 3NE1<br>437-0                                              | 3NE1<br>438-0                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                        |                                                          | gR/gS                                                   | gR/gS                                                   | gR/gS                                                    | gR/gS                                                    | gR/gS                                                      | gR/gS                                                      | gR/gS                                                      | gR/gS                                                      |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body) 1)<br>Power dissipation at $I_n$ 1)<br>Cyclic load factor $WL$<br>Weight. approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 690<br>350<br>58000<br>430000<br>75<br>42<br>1.0<br>0.7 | 690<br>400<br>84000<br>590000<br>85<br>45<br>1.0<br>0.7 | 690<br>450<br>104000<br>750000<br>85<br>53<br>1.0<br>0.7 | 690<br>500<br>149000<br>950000<br>90<br>56<br>1.0<br>0.7 | 690<br>560<br>215000<br>1700000<br>65<br>50<br>1.0<br>0.95 | 690<br>630<br>293000<br>2350000<br>70<br>55<br>1.0<br>0.95 | 690<br>710<br>437000<br>3400000<br>68<br>60<br>1.0<br>0.95 | 690<br>800<br>723000<br>5000000<br>70<br>59<br>1.0<br>0.95 |

Accessories 2)

Fuse base, 1-pole 3NH3 330 Fuse puller 3NX1 011 Fused switch disconnector 3NP53

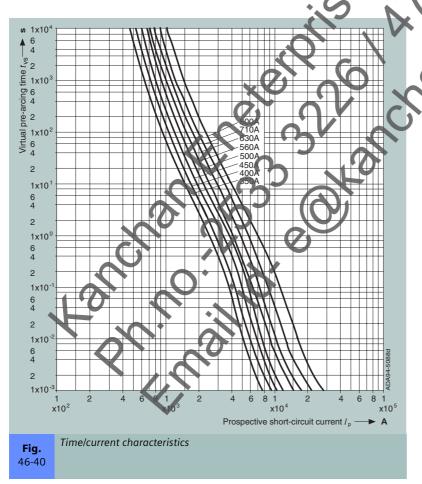
Switch disconnector with fuses 3KL57 30-1.B00 3KM57 30-1.B00

3NH3 430

3NP54

3KL61 30-1AB0

3NE1 3..-0 3NE1 4..-0


400 500 600 700 800

Recovery voltage  $V_w \longrightarrow V$ 

Correction factor  $k_A$  for clearing  $l^2t$  value

**Table** 46-20 1) Temperature rise and power dissipation when used in an l.v.h b ... fuse base

2) Minimum required connection cross-section when using the fuse base and switch disconnector, refer to Section 2.3



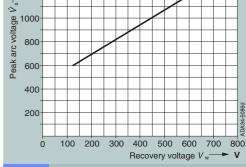



Fig. 46-42

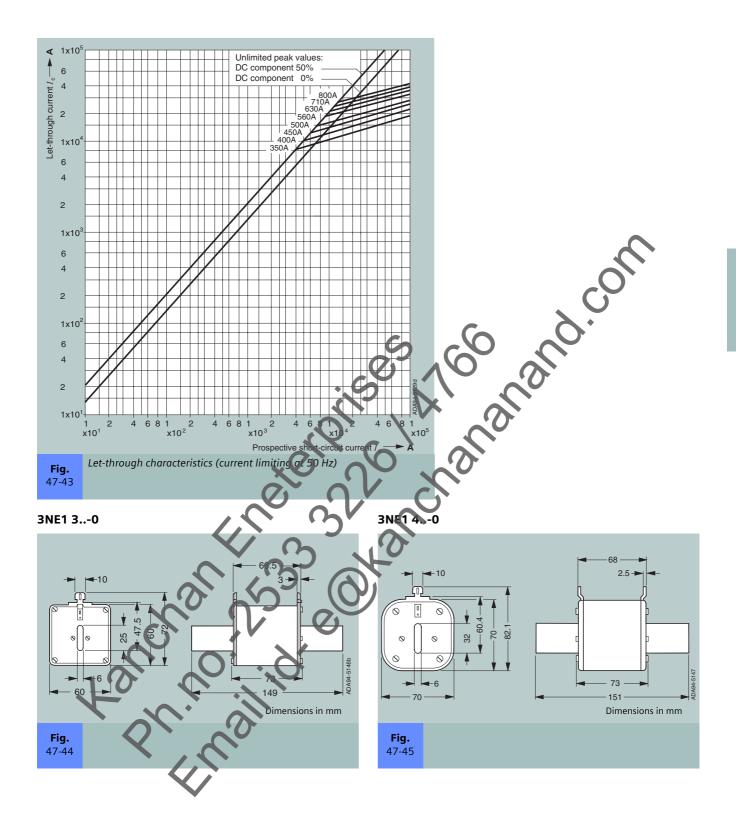
0.6

0.4

0.2

Fig.

46-41


> 1400

1200

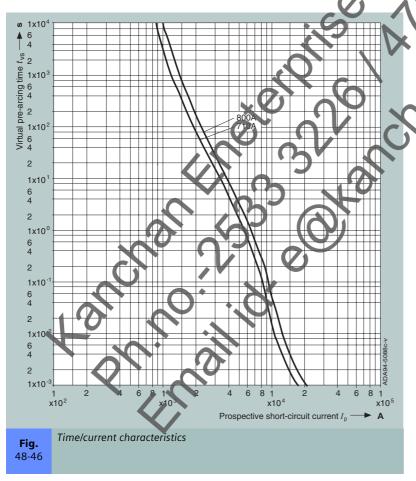
200

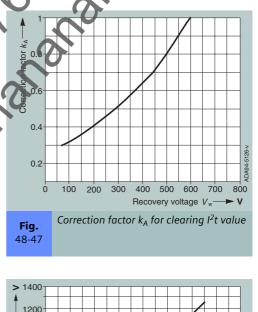
300

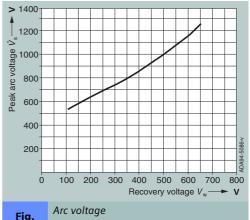
Arc voltage

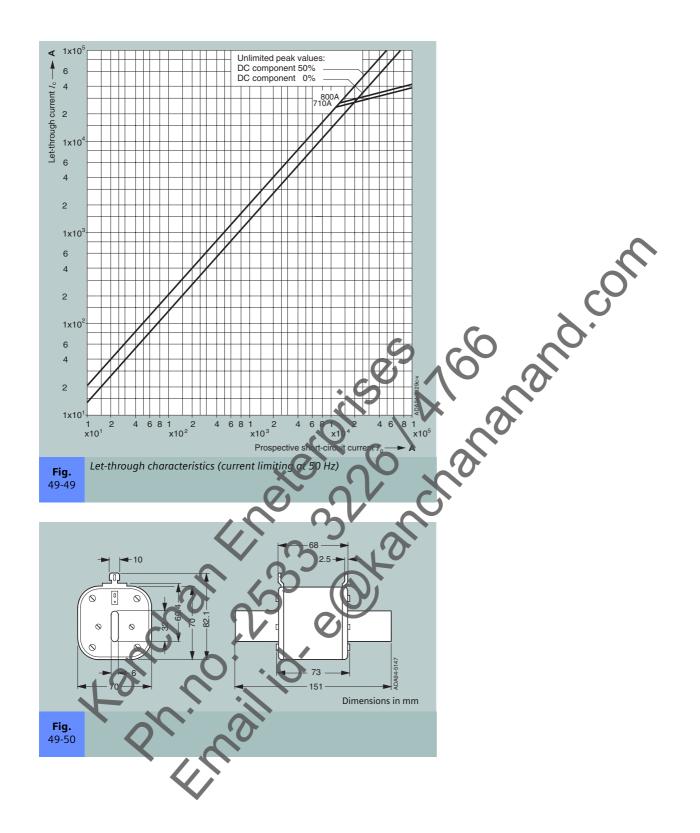


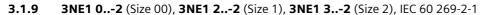
#### **3.1.8 3NE1 4..-1** (IEC 60 269-2-1, Size 3)





| Order No.                                                                                                                                                                                                                                                                                                         |                                                          | 3NE1 437-1                                                 | 3NE1 438-1                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                                              |                                                          | gR                                                         | gR                                                         |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body) <sup>1)</sup><br>Power dissipation at $I_n$ <sup>1)</sup><br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 600<br>710<br>321000<br>2460000<br>85<br>65<br>1.0<br>0.95 | 600<br>800<br>437000<br>3350000<br>95<br>72<br>1.0<br>0.95 |
| Accessories <sup>2)</sup> Fuse base, 1-pole Fuse puller Fused switch disconnector Switch disconnector with fuses                                                                                                                                                                                                  |                                                          | 3NH3 430<br>3NX1 011<br>3NP54<br>3KL62 30                  | COM                                                        |


**Table** 48-21


1) Temperature rise and power dissipation when used in an l.v.h.b.c. fuse base


2) Minimum required connection cross-section when using the fuse base and sw tch disconnector, refer to Section 2.3

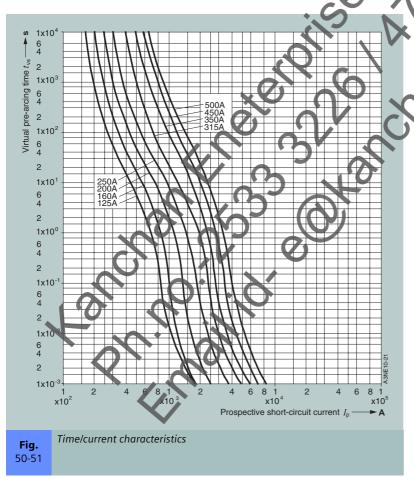


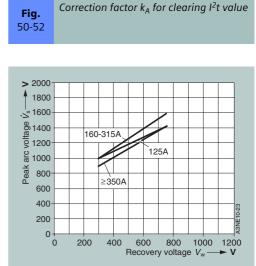












| Order No.                                                                                                                                                                                                                                                                                                         |                                                          | 3NE1<br>022-2                                           | 3NE1<br>224-2                                          | 3NE1<br>225-2                                          | 3NE1<br>227-2                                           | 3NE1<br>230-2                                            | 3NE1<br>331-2                                           | 3NE1<br>333-2                                            | 3NE1<br>334-2                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                                              |                                                          | gR                                                      | gR                                                     | gR                                                     | gR                                                      | gR                                                       | gR                                                      | gR                                                       | gR                                                       |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body) <sup>1)</sup><br>Power dissipation at $I_n$ <sup>1)</sup><br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 690<br>125<br>3115<br>23000<br>55<br>13.5<br>1.0<br>0.2 | 690<br>160<br>2650<br>15840<br>70<br>30<br>1.0<br>0.55 | 690<br>200<br>5645<br>44000<br>62<br>28<br>1.0<br>0.55 | 690<br>250<br>11520<br>68800<br>70<br>35<br>1.0<br>0.55 | 690<br>315<br>22580<br>135500<br>75<br>42<br>1.0<br>0.55 | 690<br>350<br>29500<br>177000<br>82<br>44<br>1.0<br>0.7 | 690<br>450<br>46100<br>276000<br>100<br>62<br>1.0<br>0.7 | 690<br>500<br>66400<br>398000<br>100<br>65<br>1.0<br>0.7 |
| Accessories <sup>2)</sup> Fuse base, 1-pole Fuse puller Fused switch disconnector Switch disconnector with fuses                                                                                                                                                                                                  | 5                                                        | 3NH3 030<br>3NX1 011<br>3NP50<br>3KL52                  | 3NH3 230<br>3NP52<br>3KL55                             |                                                        |                                                         | 3NH3 330<br>3NP53<br>3KL57                               |                                                         | 3NH3-340<br>3NP54<br>3KLo1                               |                                                          |

**Table** 50-22

1) Temperature rise and power dissipation when used in an l.v.h.b.c. fuse base

2) Minimum required connection cross-section when using the fuse hase and switch disconnector, refer to Section 2.3

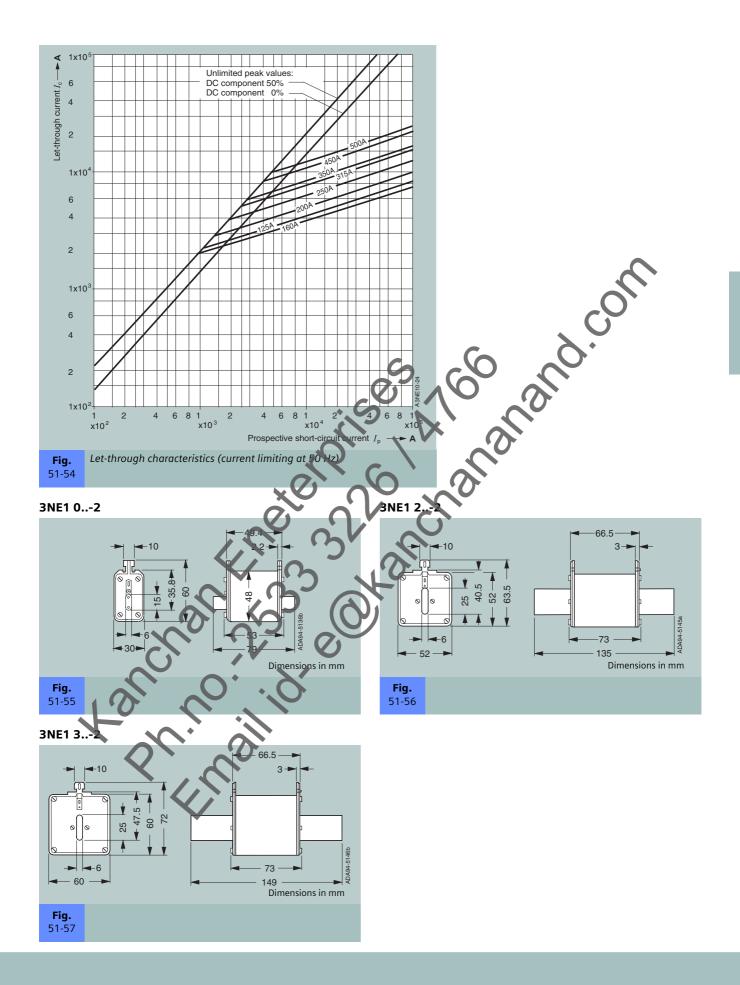




100 200 300 400 500 600 700 800

Recovery voltage  $V_w \longrightarrow V$ 

≥160A


**Fig.** 50-53

Correction

0.2

0

Arc voltage

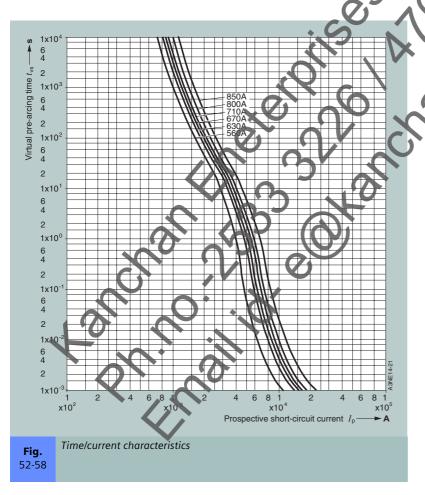


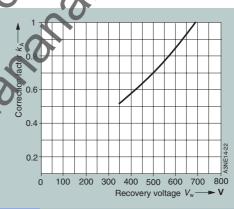
#### **3.1.10 3NE1 4..-2** (IEC 60 269-2-1, Size 3)



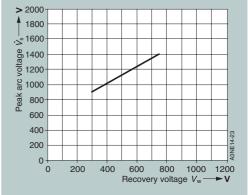
| Order No.                                                                                                                                                                      | 3NE1 435-2                                                          | 3NE1 436-2                                                | 3NE1 447-2                                         | 3NE1 437-2                                                | 3NE1 438-2                                                | 3NE1 448-2                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                           | gR                                                                  | gR                                                        | gR                                                 | gR                                                        | gR                                                        | gR                                                 |
| $(t_{vs} = 1 \text{ ms})$ Clearing $I^2t$ value $I^2t_A$ at $V_n$ Temperature rise at $I_n$ (center of the fuse body) 1) Power dissipation at $I_n$ 1) Cyclic load factor $WL$ | A 560<br>A <sup>2</sup> s 130000<br>A <sup>2</sup> s 845000<br>A 80 | 690<br>630<br>203000<br>1320000<br>82<br>62<br>1.0<br>1.0 | 690<br>670<br>240000<br>1557000<br>90<br>65<br>1.0 | 690<br>710<br>265000<br>1725000<br>90<br>72<br>1.0<br>1.0 | 690<br>800<br>361000<br>2348000<br>95<br>82<br>1.0<br>1.0 | 690<br>850<br>520000<br>3381000<br>95<br>76<br>1.0 |

Accessories 2)

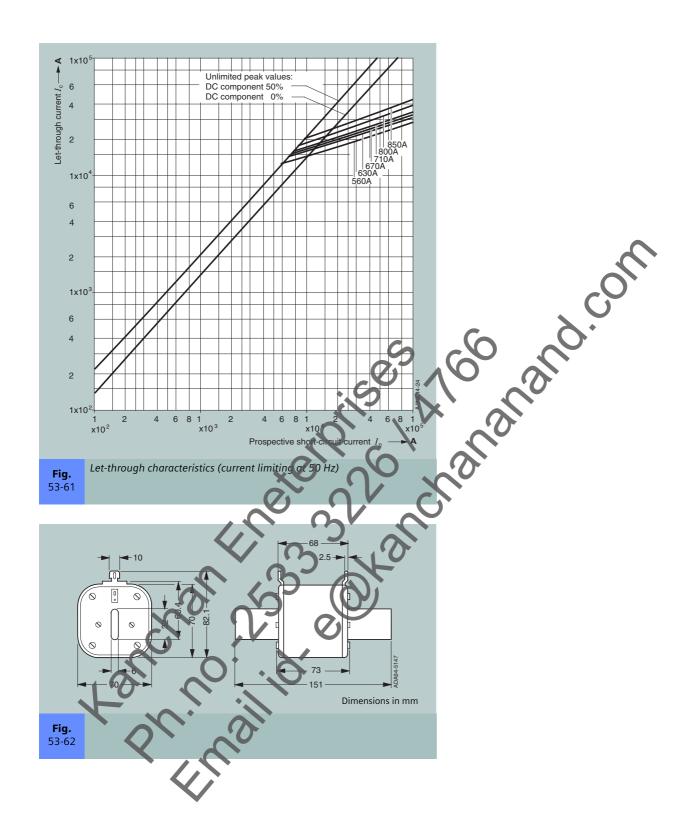

Fuse base, 1-pole 3NH3 340
Fuse puller 3NX1 011
Fused quitth disconnector 3NP54


Fused switch disconnector3NP543NP54Switch disconnector with fuses3KL613KL62

**Table** 52-23


1) Temperature rise and power dissipation when used in an l.v.h.b.c. fuse base

2) Minimum required connection cross-section when using the fuse base and sw tch disconnector, refer to Section 2.3













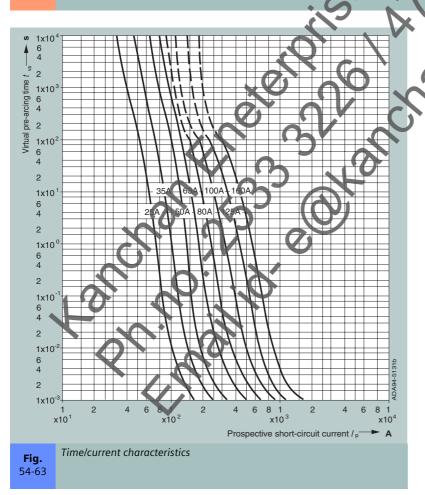

#### **3.1.11 3NE8 0..-1** (IEC 60 269-2-1, Size 00)

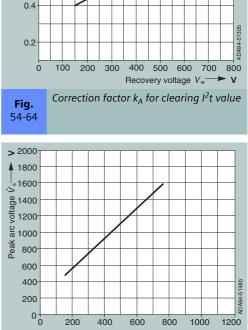


| Order No.                                                                                                                                                                                                                                                                            | 3NE8015-1                                         | 3NE8003-1                                         | 3NE8017-1                                           | 3NE8018-1                                            | 3NE8020-1                                            | 3NE8021-1                                             | 3NE8022-1                                               | 3NE8024-1                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                 | gR                                                | gR                                                | gR                                                  | gR                                                   | aR                                                   | aR                                                    | aR                                                      | aR                                                       |
| Rated voltage $V_n$ Rated current $I_n$ A Pre-arcing $I^2t$ value $I^2t_s$ ( $t_{vs} = 1$ ms) Clearing $I^2t$ value $I^2t_A$ at $V_n$ A <sup>2</sup> s Temperature rise at $I_n$ K (center of the fuse body) Power dissipation at $I_n$ W Cyclic load factor $WL$ Weight, approx. kg | 690<br>25<br>30<br>180<br>35<br>7<br>0.95<br>0.20 | 690<br>35<br>70<br>400<br>45<br>9<br>0.95<br>0.20 | 690<br>50<br>120<br>700<br>65<br>14<br>0.95<br>0.20 | 690<br>63<br>260<br>1400<br>70<br>16<br>0.95<br>0.20 | 690<br>80<br>450<br>2400<br>80<br>19<br>0.95<br>0.20 | 690<br>100<br>850<br>4200<br>90<br>22<br>0.95<br>0.20 | 690<br>125<br>1400<br>6500<br>110<br>28<br>0.95<br>0.20 | 690<br>160<br>2800<br>13000<br>130<br>38<br>0.95<br>0.20 |

Accessories 1)

Fuse base, 1-pole 3NH3 030
Fuse base, 3-pole 3NH4 030
Fuse puller 3NX1 011
Fused switch disconnector 3NP40
3NP50

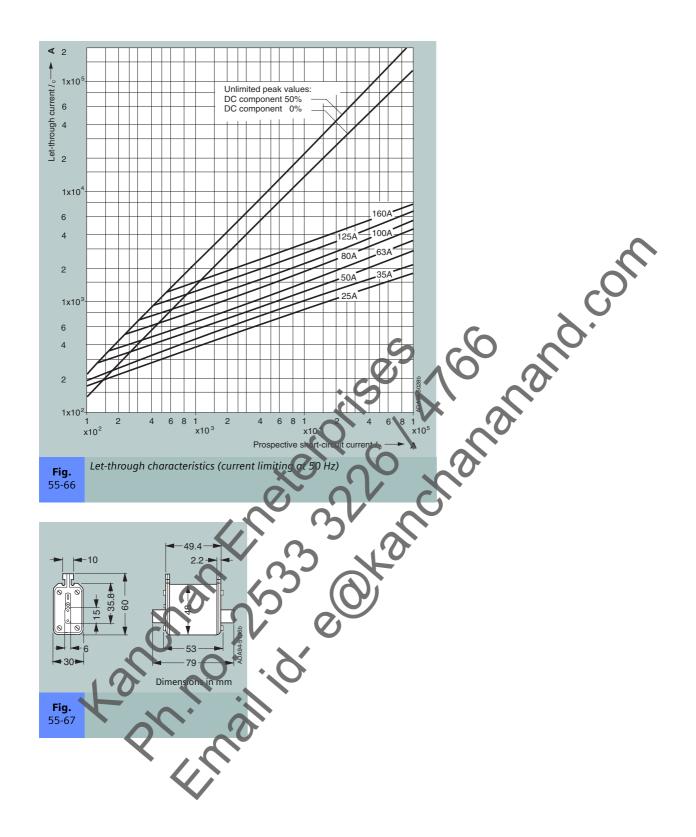

Switch disconnector with fuses 3KL50 30-1.800


3KM50 30-1.B00

3KL52 30-1.B00 3 (M52 30-1.B00

**Table** 54-24

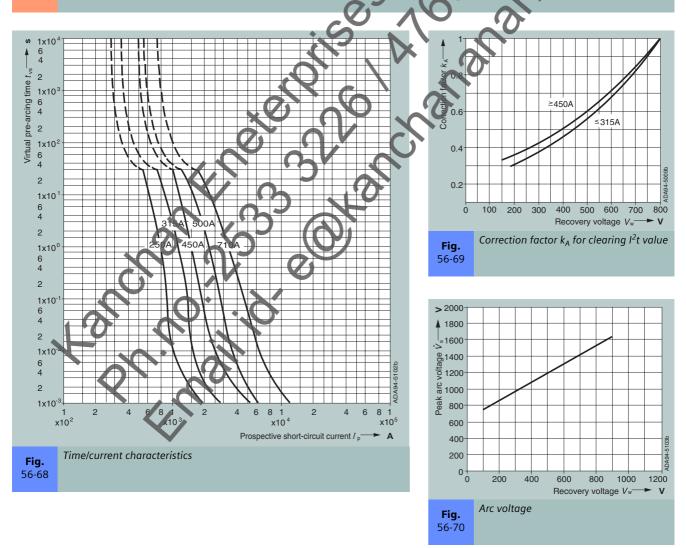
1) Max. current and min. required connection cross-section when using fuse bases and switch disconnector, refer to Section 2.3






Arc voltage

**Fig.** 54-65


Recovery voltage V<sub>w</sub> **∨ ∨** 



**3.1.12 3NE4 3..-OB, 3NE4 337** (IEC 60 269-4-1, Size 2/110) 1)

| Order No.                                                                                                                                                                                                                                                                             |                                                          | 3NE4 327-0B                                                       | 3NE4 330-0B                                              | 3NE4 333-0B                                                | 3NE4 334-0B                                                | 3NE4 337                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  | 3 ,                                                      |                                                                   | aR                                                       | aR                                                         | aR                                                         | aR                                                          |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 800<br>250<br>3600<br>29700<br>175<br>105<br>0.85<br>0.7          | 800<br>315<br>7400<br>60700<br>170<br>120<br>0.85<br>0.7 | 800<br>450<br>29400<br>191000<br>190<br>140<br>0.85<br>0.7 | 800<br>500<br>42500<br>276000<br>195<br>155<br>0.85<br>0.7 | 800<br>710<br>142000<br>923000<br>170<br>155<br>0.95<br>0.7 |
| Accessories <sup>2)</sup> Fuse base, 1-pole Fuse puller Fused switch disconnector Switch disconnector with fuses                                                                                                                                                                      |                                                          | 3NH3 330<br>3NX1 011<br>3NP53<br>3KL57 30-1.B00<br>3KM57 30-1.B00 |                                                          | 3NH3 430<br>3NP54<br>3KL61                                 | , ,                                                        | NP54<br>3KL62                                               |

**Table** 56-25



<sup>1)</sup> Envelope dimension and pullers correspond to IEC 60269-2-1; however contact blades are slotted according to IEC 60269-4-1 2) Max. current and min. required connection cross-section when using fuse bases and switch disconnector, refer to Section 2.3



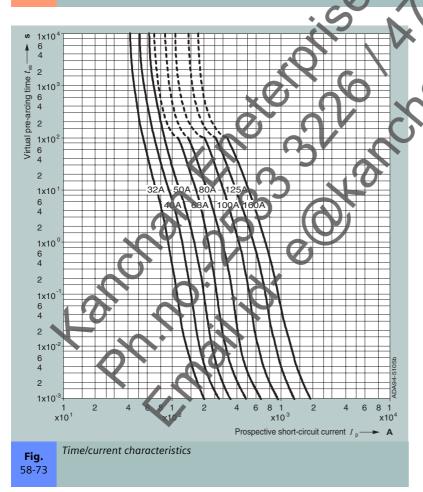
#### **3.1.13 3NE4 1..** (IEC 60 269-2-1, Size 0)

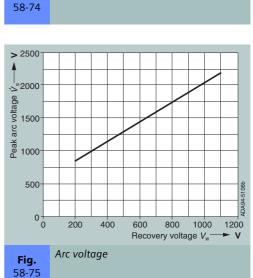


| Order No.                            | 3NE4 101        | 3NE4 102                                           | 3NE4 117                                            | 3NE4 118                                             | 3NE4 120                                             | 3NE4 121                                              | 3NE4 122                                                 | 3NE4 124                                                 |
|--------------------------------------|-----------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Utilization category<br>(IEC 60 269) | gR              | gR                                                 | gR                                                  | aR                                                   | aR                                                   | aR                                                    | aR                                                       | aR                                                       |
| Rated voltage $V_n$                  | 45<br>12<br>0.9 | 1000<br>40<br>75<br>500<br>50<br>13<br>0.9<br>0.27 | 1000<br>50<br>120<br>800<br>65<br>16<br>0.9<br>0.27 | 1000<br>63<br>230<br>1500<br>78<br>20<br>0.9<br>0.27 | 1000<br>80<br>450<br>3000<br>82<br>22<br>0.9<br>0.27 | 1000<br>100<br>900<br>6000<br>85<br>24<br>0.9<br>0.27 | 1000<br>125<br>1800<br>14000<br>100<br>30<br>0.9<br>0.27 | 1000<br>160<br>3600<br>29000<br>120<br>35<br>0.9<br>0.27 |

Accessories 1)
Fuse base, 1-pole 3NH3 120
Fuse base, 3-pole 3NH4 230
Fuse puller 3NX1 011
Fused switch disconnector 3NP42, 3NP52

Switch disconnector with fuses 3KL55 30-1.800 3KM55 30-1.800


**Table** 58-26


1) Max. current and min. required connection cross-section when using fuse bases and switch disconnector, refer to Section 2.3

0.4

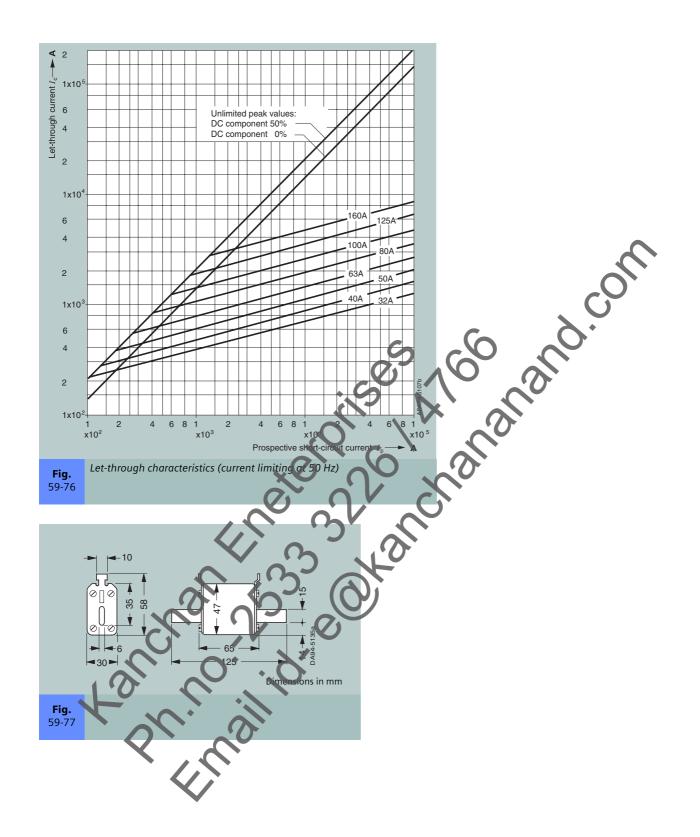
0.2

Fig.





400


600

Correction factor  $k_A$  for clearing  $I^2$ t value

Recovery voltage  $V_{\rm w}$  -

800

200

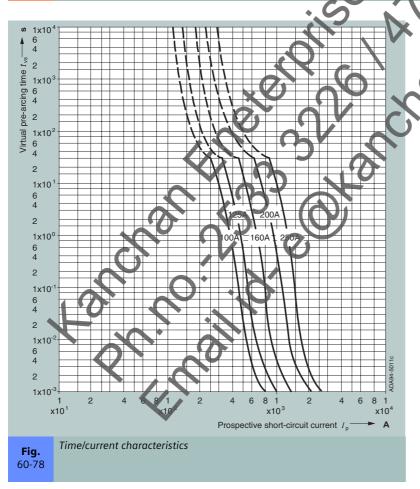


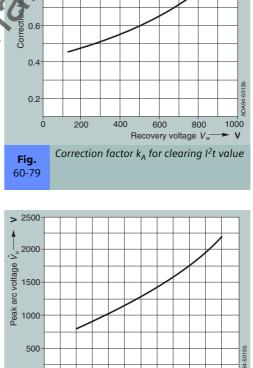
### **3.1.14 3NE3 22.** (IEC 60 269-4-1, Size 1/110) 1)



| Order No.                                                                                                                                                                                                                         |                                                          | 3NE3 221                                               | 3NE3 222                                                | 3NE3 224                                                | 3NE3 225                                                | 3NE3 227                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                              |                                                          | aR                                                     | aR                                                      | aR                                                      | aR                                                      | aR                                                      |
| Rated current $I_n$ Pre-arcing $I^2t$ value $I^2t_s$ ( $t_{vs} = 1 \text{ ms}$ )  Clearing $I^2t$ value $I^2t_A$ at $V_n$ Temperature rise at $I_n$ (center of the fuse body)  Power dissipation at $I_n$ Cyclic load factor $WL$ | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 1000<br>100<br>665<br>4800<br>65<br>28<br>0.95<br>0.55 | 1000<br>125<br>1040<br>7200<br>70<br>36<br>0.95<br>0.55 | 1000<br>160<br>1850<br>13000<br>90<br>42<br>1.0<br>0.55 | 1000<br>200<br>4150<br>30000<br>80<br>42<br>1.0<br>0.55 | 1000<br>250<br>6650<br>48000<br>90<br>50<br>1.0<br>0.55 |

Accessories 2) Fuse base, 1-pole Fuse base, 3-pole


3NX1 011 Fuse puller Fused switch disconnector 3NP42, 3NP52 Switch disconnector with fuses 3KL55 30-1.B00


3KM55 30-1.B00

3NH3 230

3NH4 230

**Table** 60-27 1) Envelope dimension and pullers correspond to IEC 60269-2-1 nowever contact places are slotted according to IEC 60269-4-1 2) Max. current and min. required connection cross-section when using fuse pases and switch disconnector, refer to Section 2.3 cording to IEC 60269-4-1





200

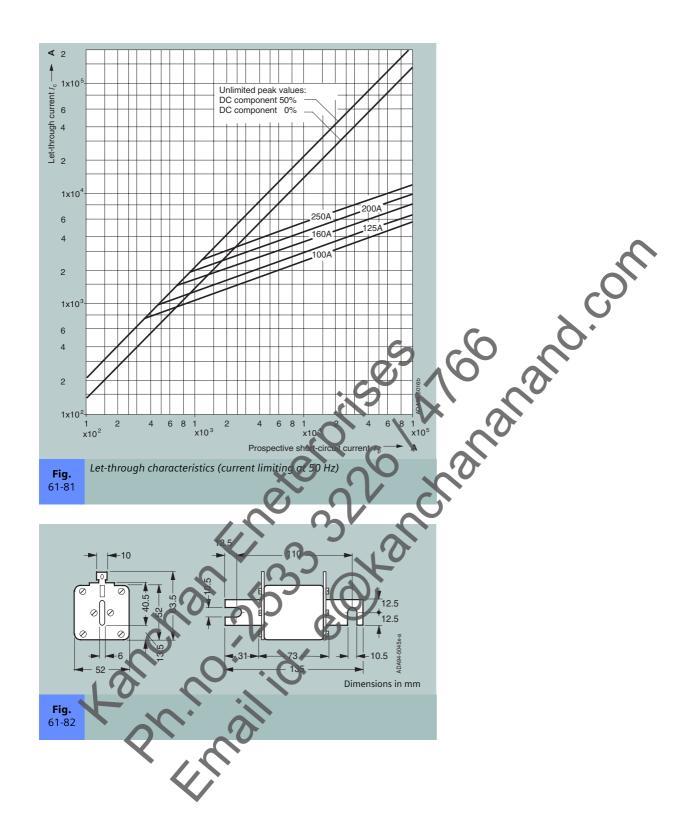

Arc voltage

Fig. 60-80 400

600

1000

800 Recovery voltage  $V_{\rm w}^-$ 

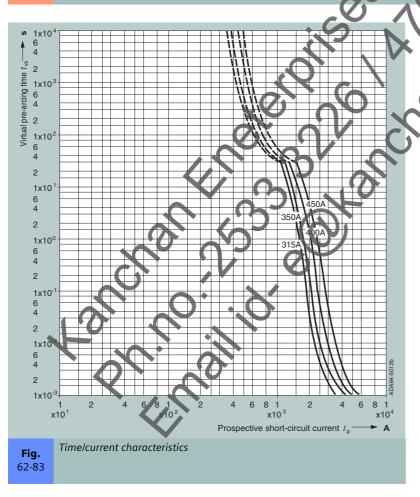


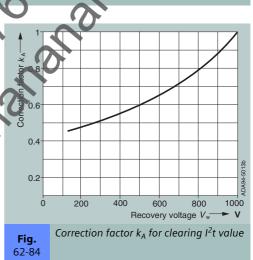
# **3.1.15 3NE3 23.** (IEC 60 269-4-1, Size 1/110) 1)

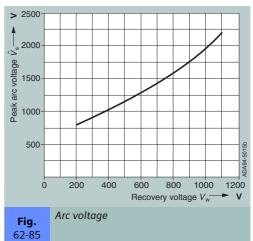


| Order No.                                                                                                                                                                                                                                                                             |                                                          | 3NE3 230-0B                                                | 3NE3 231                                                   | 3NE3 232-0B                                                | 3NE3 233                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  |                                                          | aR                                                         | aR                                                         | aR                                                         | aR                                                         |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 1000<br>315<br>13400<br>80000<br>100<br>65<br>0.95<br>0.55 | 1000<br>350<br>16600<br>100000<br>120<br>75<br>0.9<br>0.55 | 1000<br>400<br>22600<br>135000<br>140<br>85<br>0.9<br>0.55 | 1000<br>450<br>29500<br>175000<br>130<br>95<br>0.9<br>0.55 |

3NH3 330


Accessories <sup>2)</sup>
Fuse base, 1-pole
Fuse puller


Fuse puller 3NX1 011
Fused switch disconnector 3NP53
Switch disconnector with fuses 3KL57 30-1.800
3KM57 30-1.800


**Table** 62-28

1) Envelope dimension and pullers correspond to IEC 60269-2-1; however contact blades are slotted according to IEC 60269-4-1

2) Max. current and min. required connection cross-section when using fuse bases and switch disconnector, refer to Section 2.3





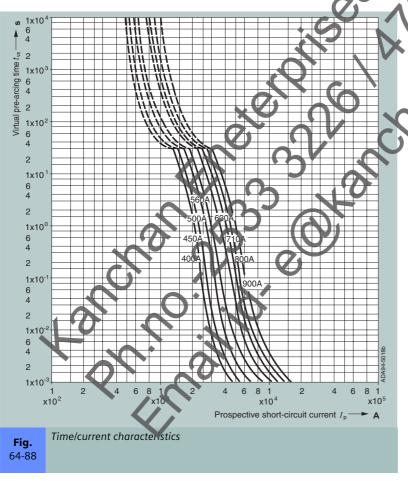


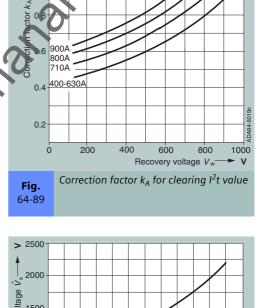


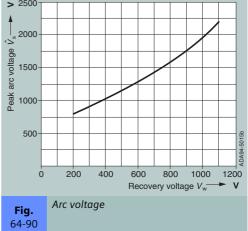
# **3.1.16 3NE3 3..** (IEC 60 269-4-1, Size 2/110) 1)

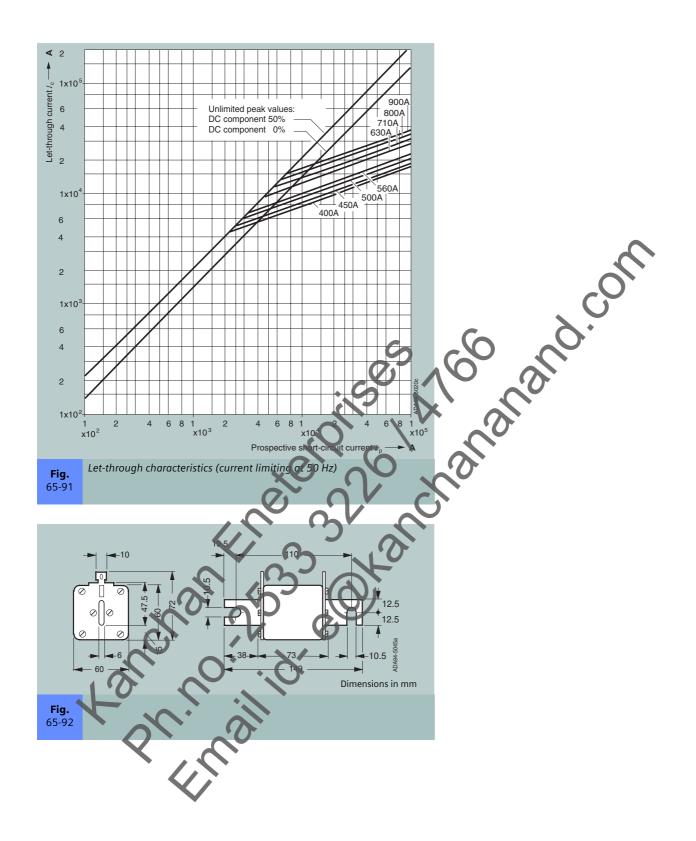


| Order No.                                             | 3NE3 332-0B                                               | 3NE3 333                                                  | 3NE3 334-0B                                               | 3NE3 335                                                  | 3NE3 336                                                    | 3NE3 337-8                                                 | 3NE3 338-8                                                  | 3NE3 340-8                                                   |
|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                  | aR                                                        | aR                                                        | aR                                                        | aR                                                        | aR                                                          | aR                                                         | aR                                                          | aR                                                           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | 1000<br>400<br>22600<br>135000<br>120<br>85<br>1.0<br>0.7 | 1000<br>450<br>29500<br>175000<br>125<br>90<br>1.0<br>0.7 | 1000<br>500<br>46100<br>260000<br>115<br>90<br>1.0<br>0.7 | 1000<br>560<br>66400<br>360000<br>120<br>95<br>1.0<br>0.7 | 1000<br>630<br>104000<br>600000<br>110<br>100<br>1.0<br>0.7 | 900<br>710<br>149000<br>800000<br>125<br>105<br>1.0<br>0.7 | 800<br>800<br>184000<br>850000<br>140<br>130<br>0.95<br>0.7 | 690<br>900<br>223000<br>1300000<br>160<br>165<br>0.95<br>0.7 |


Accessories 2)


Fuse base, 1-pole 3NH3 430 Fuse puller 3NX1 011 Fused switch disconnector 3NP54 Switch disconnector with fuses 3KL61 30-1AB0


3KL62


**Table** 64-29 1) Envelope dimension and pullers correspond to IEC 60269-2-1; however contact blades are slotted according to IEC 60269-4-1

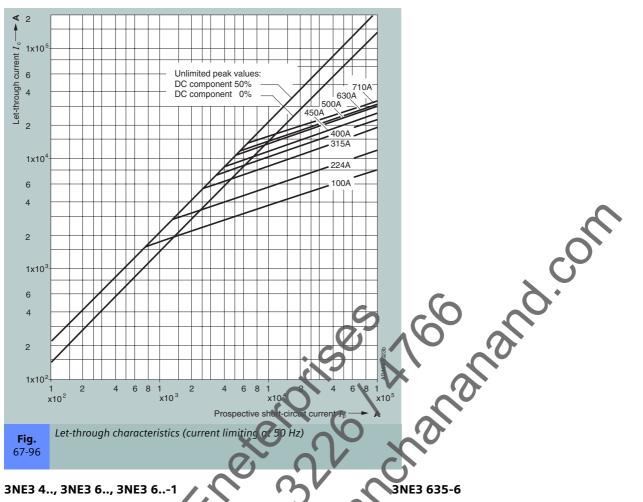
2) Max. current and min. required connection cross-section when using fuse bas as and switch discornec or, refer to Section 2.3

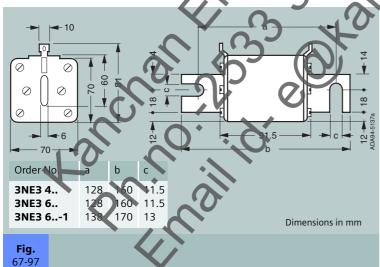


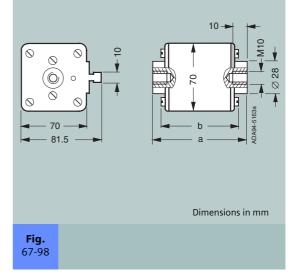







**3.1.17 3NE3 4.., 3NE3 6..** (IEC 60 269-4-1, Size 3/130)

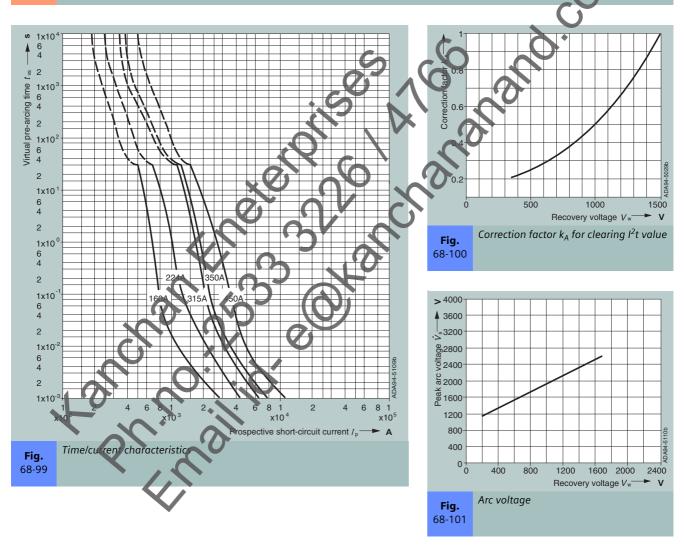

| Order No.                                                                                                                                                                                                                                                                             | 3NE3 421                                                | 3NE3 626                                                 | 3NE3 430                                                   | 3NE3 432                                                    | 3NE3 635<br>3NE3 635-6                                      | 3NE3 434                                                    | 3NE3 636                                                      | 3NE3 637,<br>3NE3 637-1 1)                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  | aR                                                      | aR                                                       | aR                                                         | aR                                                          | aR                                                          | aR                                                          | aR                                                            | aR                                                    |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | 1000<br>100<br>1800<br>13500<br>45<br>25<br>1.0<br>1.15 | 1000<br>224<br>7200<br>54000<br>140<br>85<br>1.0<br>1.15 | 1000<br>315<br>29000<br>218000<br>120<br>80<br>1.0<br>1.15 | 1000<br>400<br>48500<br>364000<br>130<br>110<br>1.0<br>1.15 | 1000<br>450<br>65000<br>488000<br>150<br>110<br>1.0<br>1.15 | 1000<br>500<br>116000<br>870000<br>120<br>95<br>1.0<br>1.15 | 1000<br>630<br>170000<br>1280000<br>136<br>132<br>1.0<br>1.15 | 1000<br>710<br>260000<br>1950000<br>170<br>145<br>1.0 |

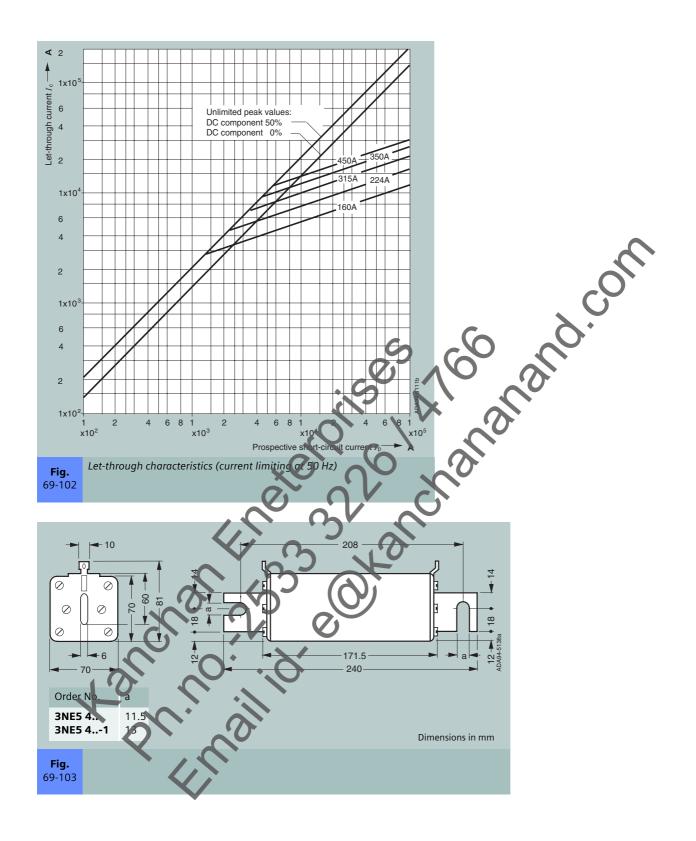

**Table** 66-30

1) Inside caliper 140 mm, M 12-screw connection







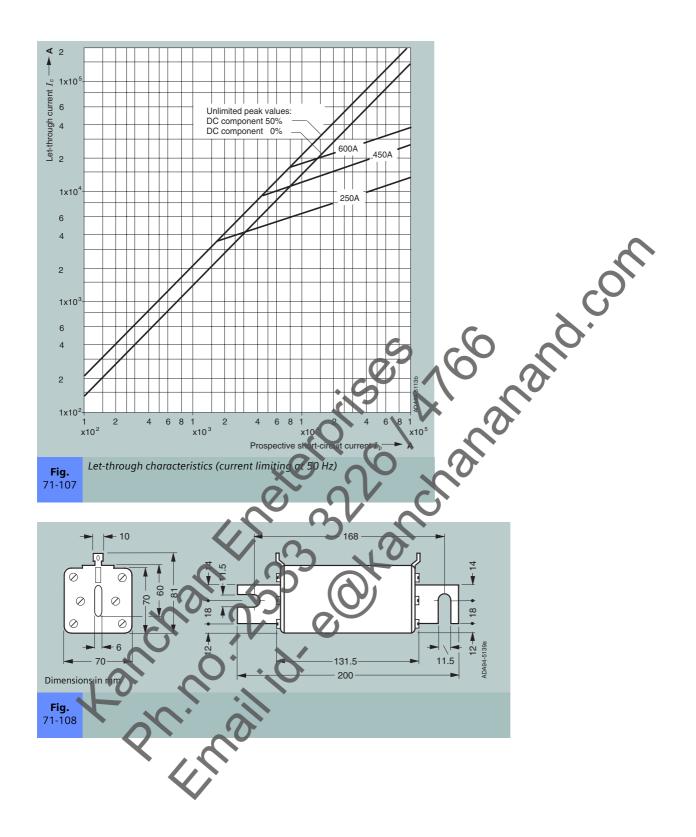




**3.1.18 3NE5 4.., 3NE5 433-1** (IEC 60 269-4-1, Size 3/210)

| Order No.                                                       |                  | 3NE5 424 | 3NE5 426 | 3NE5 430 | 3NE5 431 | 3NE5 433<br>3NE5 433-1 |
|-----------------------------------------------------------------|------------------|----------|----------|----------|----------|------------------------|
| Utilization category<br>(IEC 60 269)                            |                  | aR       | aR       | aR       | aR       | aR                     |
| Rated voltage V <sub>n</sub>                                    | ٧                | 1500     | 1500     | 1500     | 1500     | 1500                   |
| Rated current I <sub>n</sub>                                    | A                | 160      | 224      | 315      | 350      | 450                    |
| Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1 \text{ ms}$ ) | A <sup>2</sup> s | 7200     | 18400    | 41500    | 57000    | 116000                 |
| Clearing $I^2t$ value $I^2t_A$ at $V_n$                         | $A^2s$           | 54000    | 138000   | 311000   | 428000   | 870000                 |
| Temperature rise at I <sub>n</sub>                              | K                | 75       | 100      | 125      | 150      | 150                    |
| (center of the fuse body)                                       |                  |          |          |          |          |                        |
| Power dissipation at I <sub>n</sub>                             | W                | 56       | 80       | 115      | 135      | 145                    |
| Cyclic load factor WL                                           |                  | 1.0      | 1.0      | 1.0      | 1.0      | 0.95                   |
| Weight, approx.                                                 | kg               | 1.95     | 1.95     | 1.95     | 1.95     | 1.95                   |
| Table                                                           |                  |          |          |          |          |                        |

**Table** 68-31



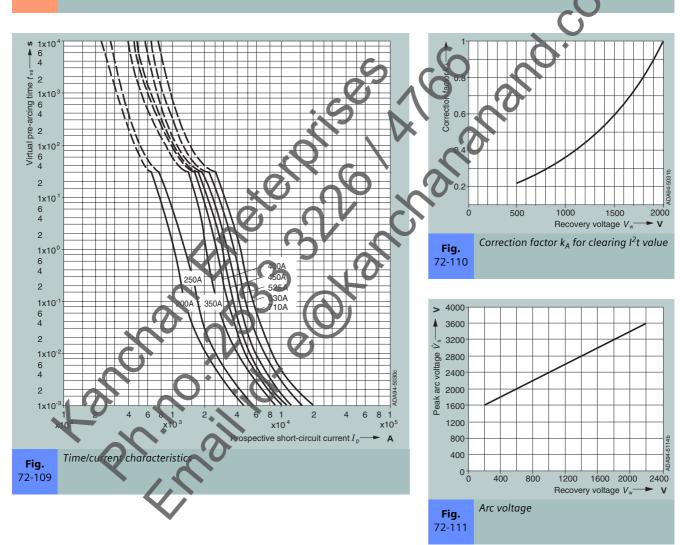


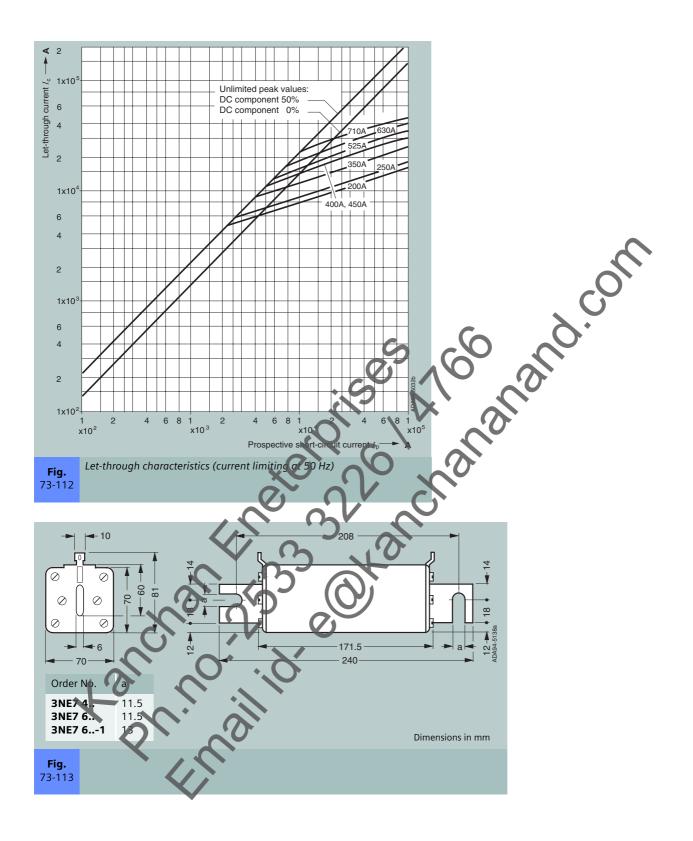

| <b>3.1.19 3NE5 6</b> (IEC 60 269-4-1, Size 3/17                                                                                          | 0)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Order No.                                                                                                                                | 3NE5 627                                             | 3NE5 633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3NE5 643                                                                                 |
| Utilization category<br>(IEC 60 269)                                                                                                     | aR                                                   | aR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aR                                                                                       |
| Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1 \text{ ms}$ )                                                   | V 1500<br>A 250<br>A <sup>2</sup> s 11200            | 1500<br>450<br>78500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1500<br>600<br>260000                                                                    |
| Temperature rise at $I_n$ (center of the fuse body)                                                                                      | A <sup>2</sup> s 84000<br>K 170<br>W 130             | 590000<br>170<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1950000<br>160<br>145                                                                    |
| Cyclic load factor WL                                                                                                                    | 1.0<br>kg 1.6                                        | 1.0<br>1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>1.6                                                                               |
| <b>Table</b> 70-32                                                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                        |
|                                                                                                                                          |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                                                       |
| *** 1x10 <sup>4</sup>                                                                                                                    |                                                      | 0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000 1500  Recovery voltage $V_w \longrightarrow V$ ctor $k_A$ for clearing $l^2t$ value |
| 6 4 2                                                                                                                                    |                                                      | 70-105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
| 1x10 <sup>-1</sup> 6 4 2 1x10 <sup>-2</sup> 6 4 2 1x10 <sup>-3</sup> 10 <sup>2</sup> 2 4 6 7 1x10 <sup>-3</sup> 10 <sup>2</sup> 4 Prospe | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | > 4000<br>\$\begin{align*} \text{ 3600} \\ \text{ 3200} \\ \text{ 2400} \\ \text{ 2000} \\ \text{ 3600} \\ \text{ 1600} \\ \text{ 1200} \\ \text{ 800} \\ \text{ 1200} \\ \text{ 800} \\ \text{ 1000} \\  1 | ADA845110b                                                                               |
| Fig. 70-104                                                                                                                              |                                                      | 400 0 400 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1200 1600 2000 2400                                                                      |

Recovery voltage  $V_w$   $\vee$   $\vee$ 

**Fig.** 70-106

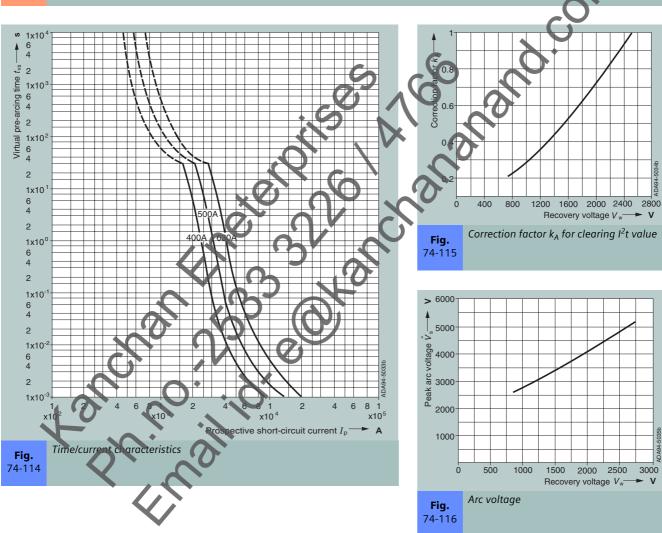
Arc voltage

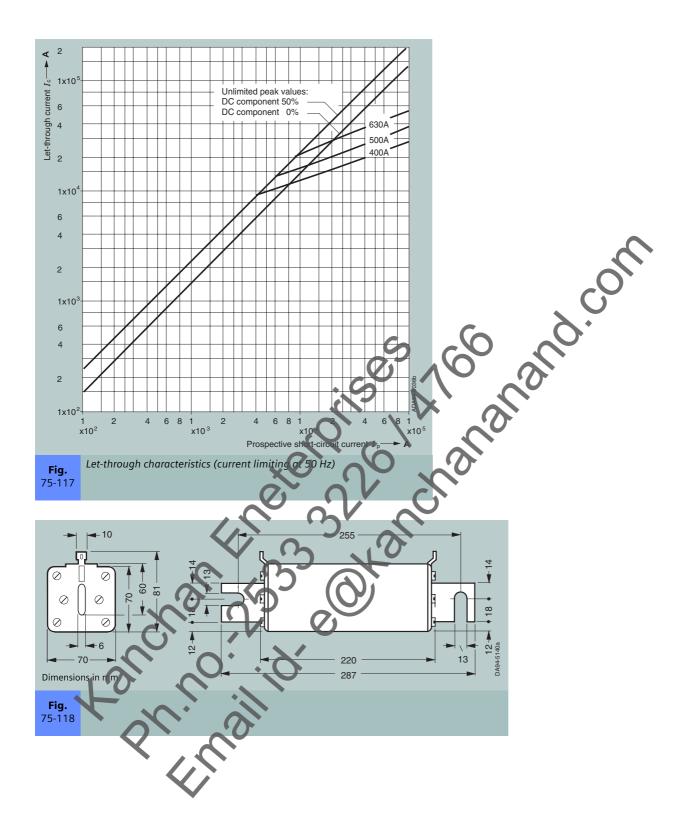




**3.1.20 3NE7 4.., 3NE7 6..** (IEC 60 269-4-1, Size 3/210)

| Order No.                                                                                                                                                                                                                                                                             | 3NE7425                                                   | 3NE7427                                                     | 3NE7431                                                     | 3NE7432                                                      | 3NE7633,<br>3NE7633-1 1)                                     | 3NE7648-1 1)                                                  | 3NE7636,<br>3NE7636-1 1)                                      | 3NE7637-1 <sup>1)</sup>                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  | aR                                                        | aR                                                          | aR                                                          | aR                                                           | aR                                                           | aR                                                            | aR                                                            | aR                                                            |
| Rated voltage $V_n$ V Rated current $I_n$ A Pre-arcing $I^2t$ value $I^2t_s$ $A^2s$ $(t_{vs} = 1 \text{ ms})$ Clearing $I^2t$ value $I^2t_A$ at $V_n$ A Temperature rise at $I_n$ K (center of the fuse body) Power dissipation at $I_n$ W Cyclic load factor $WL$ Weight, approx. kg | 2000<br>200<br>18400<br>138000<br>85<br>75<br>1.0<br>1.95 | 2000<br>250<br>29000<br>218000<br>110<br>110<br>1.0<br>1.95 | 2000<br>350<br>74000<br>555000<br>105<br>120<br>1.0<br>1.95 | 2000<br>400<br>116000<br>870000<br>130<br>150<br>1.0<br>1.95 | 2000<br>450<br>128000<br>960000<br>165<br>160<br>1.0<br>1.95 | 2000<br>525<br>149000<br>1120000<br>210<br>210<br>1.0<br>1.95 | 2000<br>630<br>260000<br>1950000<br>200<br>220<br>1.0<br>1.95 | 2000<br>710<br>415000<br>3110000<br>230<br>275<br>1.0<br>1.95 |

**Table** 72-33


1) M 12-screw connection

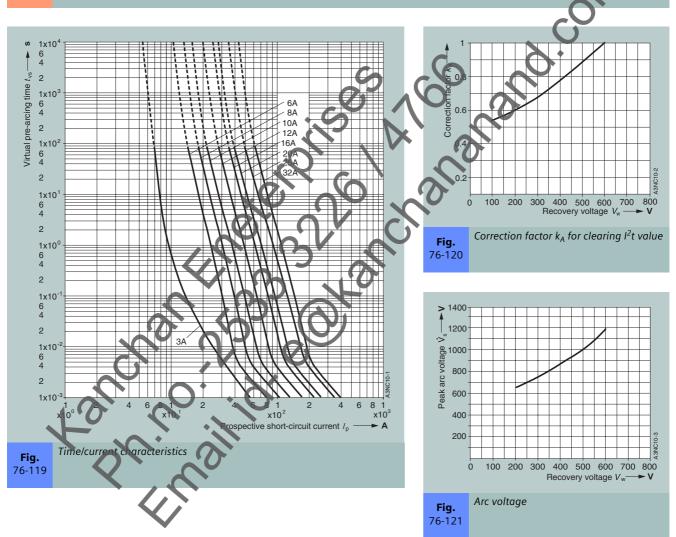


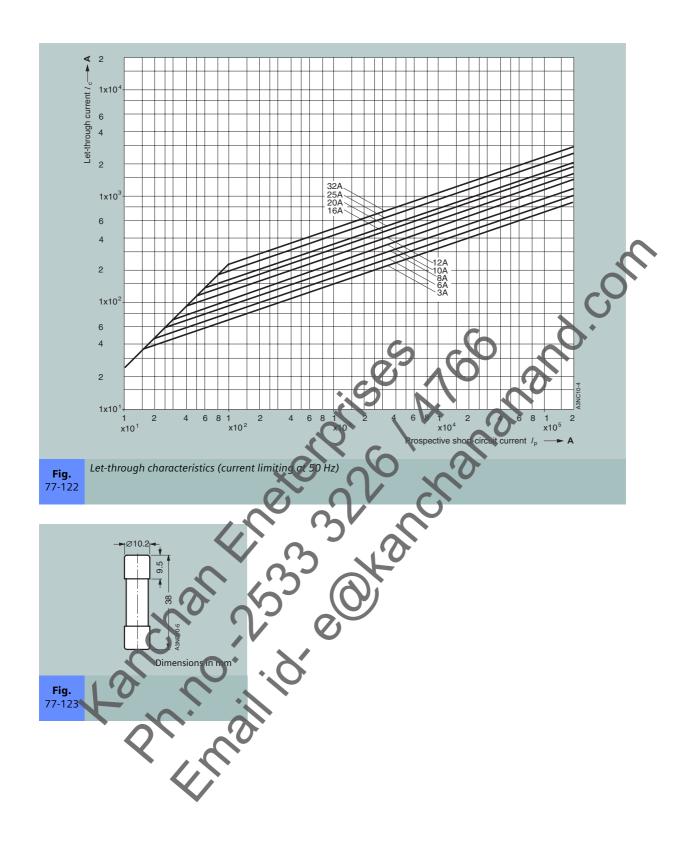



## **3.1.21 3NE9 6..** (IEC 60 269-4-1, Size 3/260)

| Order No.                                                                                                                                                                                                                                                                             |                                            | 3NE9 632-1                                                 | 3NE9 634-1                                                   | 3NE9 636-1A                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  |                                            | aR                                                         | aR                                                           | aR                                                           |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>K<br>W<br>kg | 2500<br>400<br>81000<br>620000<br>160<br>205<br>1.0<br>2.5 | 2500<br>500<br>170000<br>1270000<br>180<br>235<br>1.0<br>2.5 | 2500<br>630<br>385000<br>2800000<br>198<br>275<br>1.0<br>2.5 |
| <b>Table</b> 74-34                                                                                                                                                                                                                                                                    |                                            |                                                            |                                                              |                                                              |



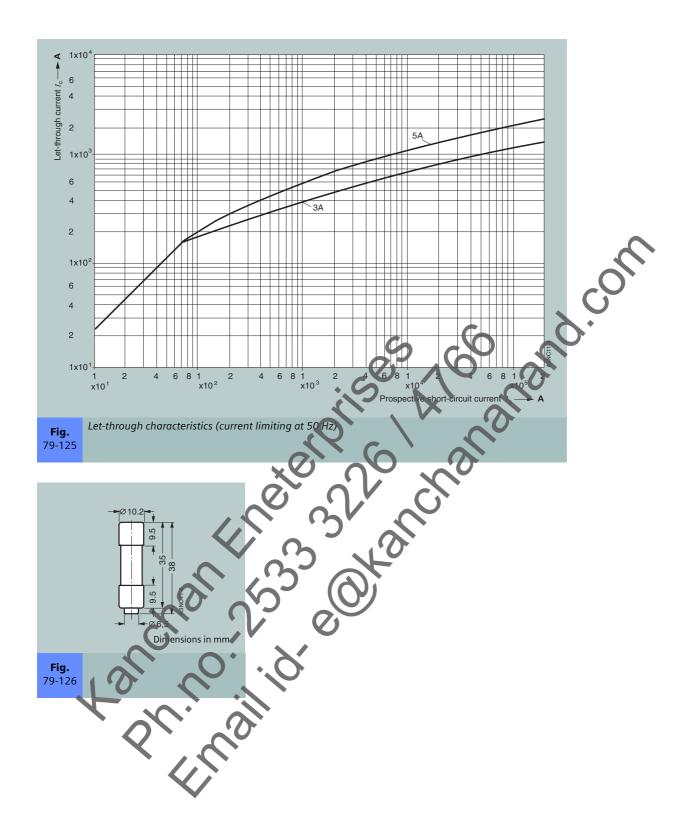




## **3.1.22 3NC1 0..** (IEC 60 269-2-1/III, Size 10 x 38 mm)



| Order No.                                                                                                   |                            | 3NC1 003      | 3NC1 006      | 3NC1 008      | 3NC1 010       | 3NC1 012        | 3NC1 016        | 3NC1 020        | 3NC1 025        | 3NC1 032        |
|-------------------------------------------------------------------------------------------------------------|----------------------------|---------------|---------------|---------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Utilization category<br>(IEC 60 269)                                                                        |                            | aR            | aR            | aR            | aR             | aR              | aR              | aR              | aR              | aR              |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>$(t_{vs} = 1 \text{ ms})$ | V<br>A<br>A <sup>2</sup> s | 600<br>3<br>3 | 600<br>6<br>4 | 600<br>8<br>6 | 600<br>10<br>9 | 600<br>12<br>15 | 600<br>16<br>25 | 600<br>20<br>34 | 600<br>25<br>60 | 600<br>32<br>95 |
| Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)           | A <sup>2</sup> s<br>K      | 8 30          | 30<br>30      | 50<br>25      | 70<br>40       | 120<br>50       | 150<br>60       | 260<br>80       | 390<br>90       | 600<br>110      |
| Power dissipation at I <sub>n</sub> Cyclic load factor WL                                                   | W                          | 1.2           | 1.5           | 2 -           | 2.5            | 3 -             | 3.5             | 4.8             | 6 -             | 7.5<br>-        |
| Weight, approx.                                                                                             | kg                         | 0.01          | 0.01          | 0.01          | 0.01           | 0.01            | 0.01            | 0.01            | 0.01            | 0.01            |



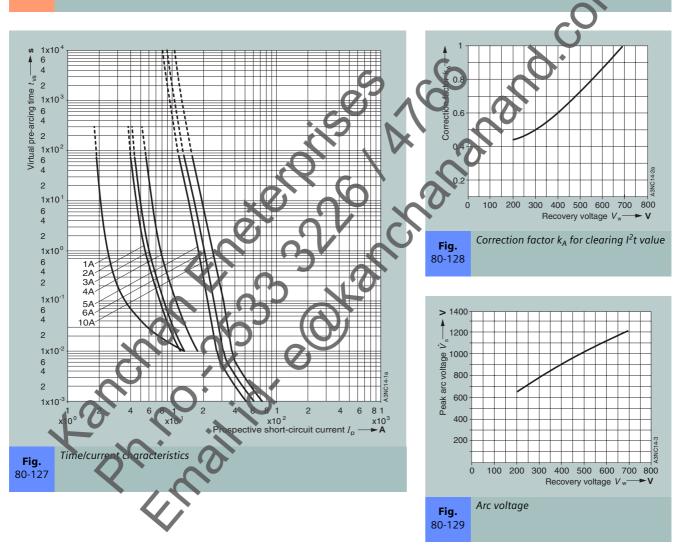


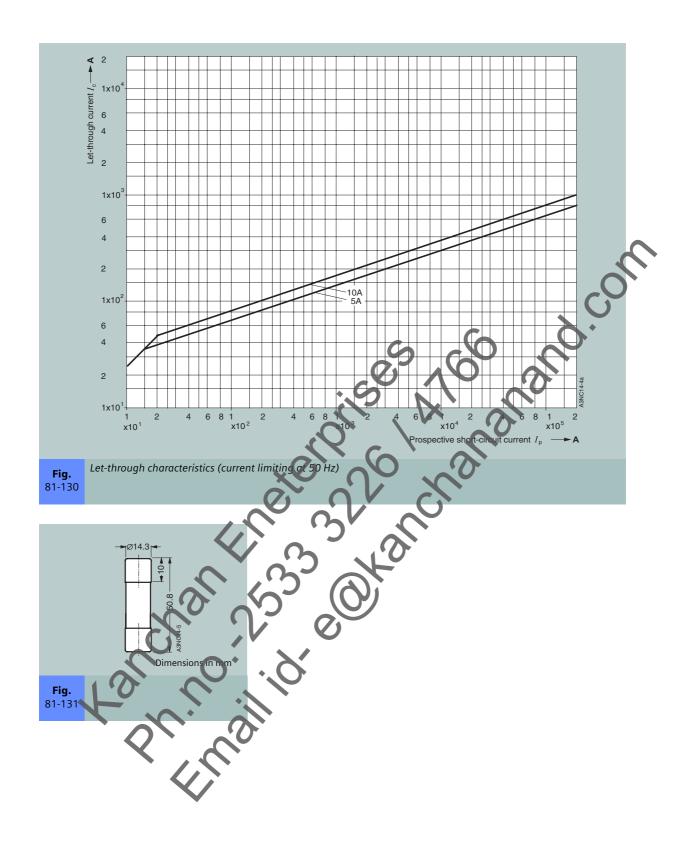



**3.1.23 3NC1 1..** (Size 10 x 38 mm, Midget Fuse)

| Order No.                                                             | 3NC1 103 | 3NC1 105 |
|-----------------------------------------------------------------------|----------|----------|
| Utilization category<br>(IEC 60 269)                                  | CLASS CC | CLASS CC |
| $(t_{vs} = 1 \text{ ms})$                                             |          | 600<br>5 |
| Temperature rise at I <sub>n</sub> (center of the fuse body)          | 50       | 45       |
| Power dissipation at I <sub>n</sub> V<br>Cyclic load factor <i>WL</i> | V 2.5    | 2        |
| Weight, approx.                                                       | g 0.01   | 0.01     |
| <b>Table</b> 78-36                                                    |          |          |





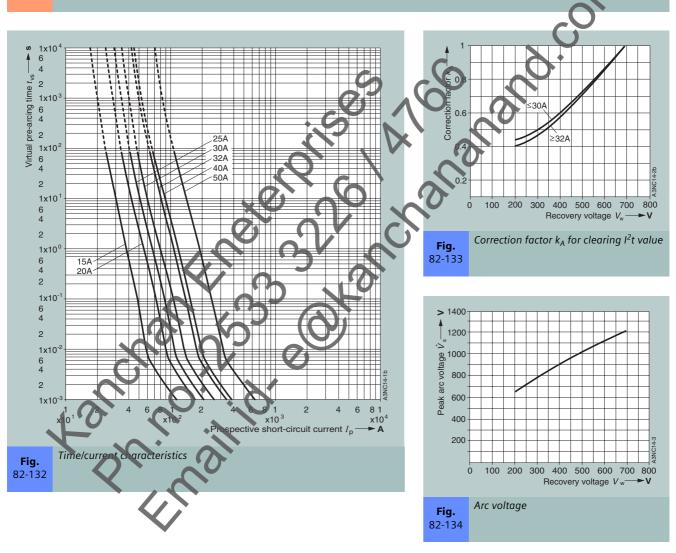


## **3.1.24 3NC1 4..** (IEC 60 269-2-1/III, Size 14 x 51)

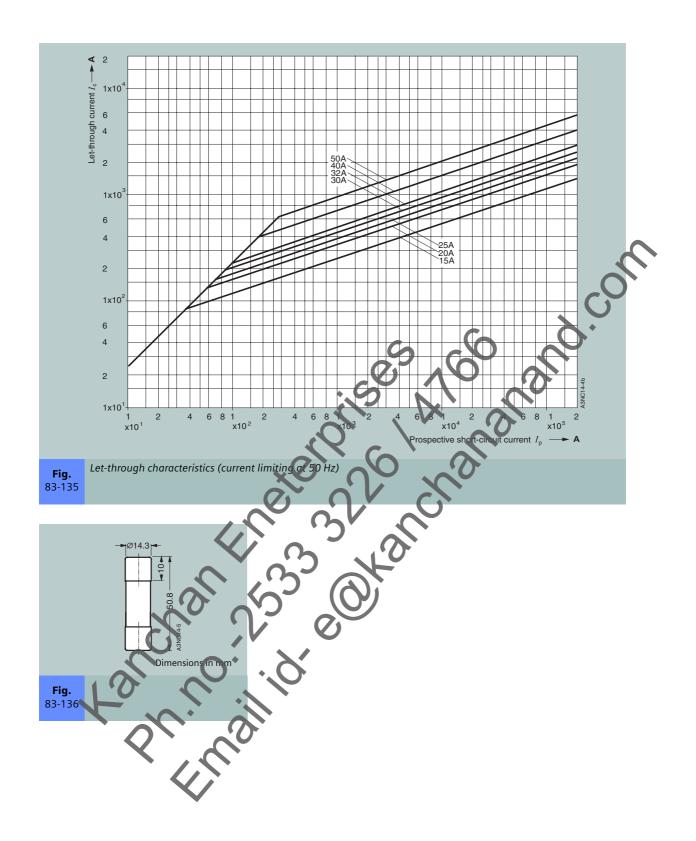


| Order No.                                                                                                     |                            | 3NC1 401       | 3NC1 402       | 3NC1 403         | 3NC1 404       | 3NC1 405         | 3NC1 406         | 3NC1 410         |
|---------------------------------------------------------------------------------------------------------------|----------------------------|----------------|----------------|------------------|----------------|------------------|------------------|------------------|
| Utilization category<br>(IEC 60 269)                                                                          |                            | aR             | aR             | aR               | aR             | aR               | aR               | aR               |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1 \text{ ms}$ ) | V<br>A<br>A <sup>2</sup> s | 660<br>1<br>-  | 660<br>2<br>-  | 660<br>3<br>-    | 660<br>4<br>-  | 690<br>5<br>1.6  | 690<br>6<br>-    | 690<br>10<br>3.6 |
| Clearing $l^2t$ value $l^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)             | A <sup>2</sup> s<br>K      | -<br>90        | -<br>30        | -<br>40          | -<br>50        | 11<br>20         | -<br>30          | 22<br>50         |
| Power dissipation at I <sub>n</sub> Cyclic load factor WL Weight, approx.                                     | W<br>kg                    | 5<br>-<br>0.02 | 3<br>-<br>0.02 | 2.5<br>-<br>0.02 | -<br>-<br>0.02 | 1.5<br>-<br>0.02 | 1.5<br>-<br>0.02 | 4<br>-<br>0.02   |

**Table** 80-37



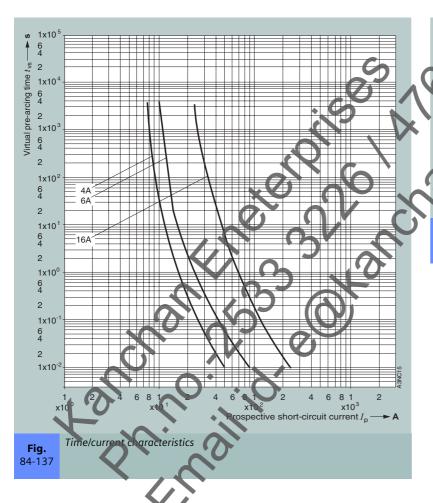


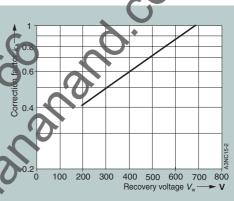


## **3.1.25 3NC1 4..** (IEC 60 269-2-1/III, Size 14 x 51)



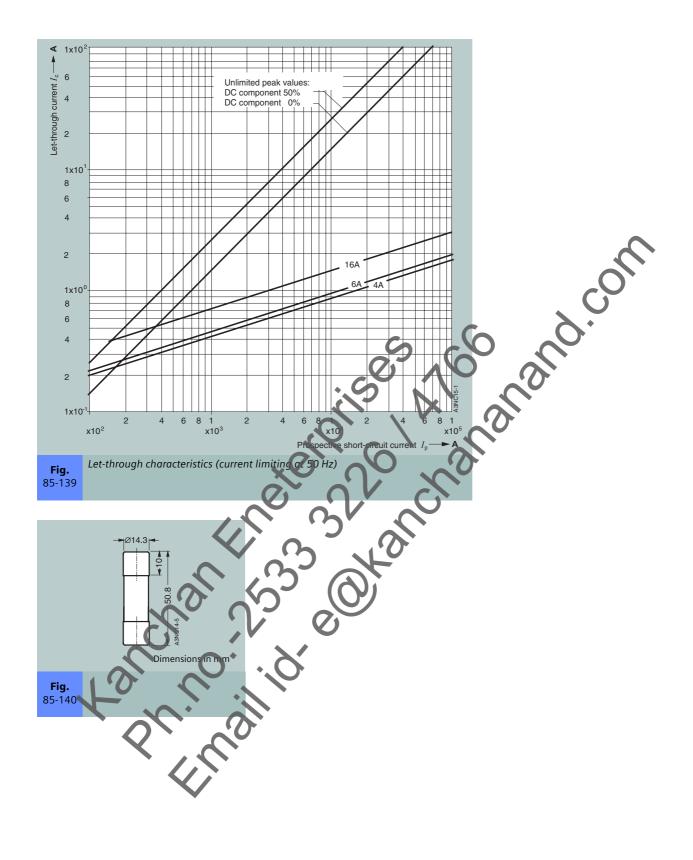
| Utilization category (IEC 60 269)       aR       aB       aR       aB       aB       aB       aB       aB       b9       690       690       6 | Order No.                                                                                                                                                                                                                                   | 0 3NC1 425 3NC1                                         | 3NC1 415 3I                                      | 3NC1 430 3NC1 432                               | 3NC1 440                          | 3NC1 450                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------|
| Rated current $I_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 ,                                                                                                                                                                                                                                         | aR aR                                                   | aR aF                                            | aR aR                                           | aR                                | aR                            |
| Power dissipation at $I_n$ W 5.5 6 7 9 7.6 8 9 Cyclic load factor $WL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$ | 25<br>44<br>58<br>130<br>80<br>150<br>80<br>7<br>9<br>- | A 15 20 A <sup>2</sup> s 10 26 K 60 70 W 5.5 6 - | 30 32<br>58 95<br>150 800<br>80 80<br>9 7.6<br> | 40<br>110<br>980<br>100<br>8<br>- | 50<br>220<br>1800<br>110<br>9 |

**Table** 82-38





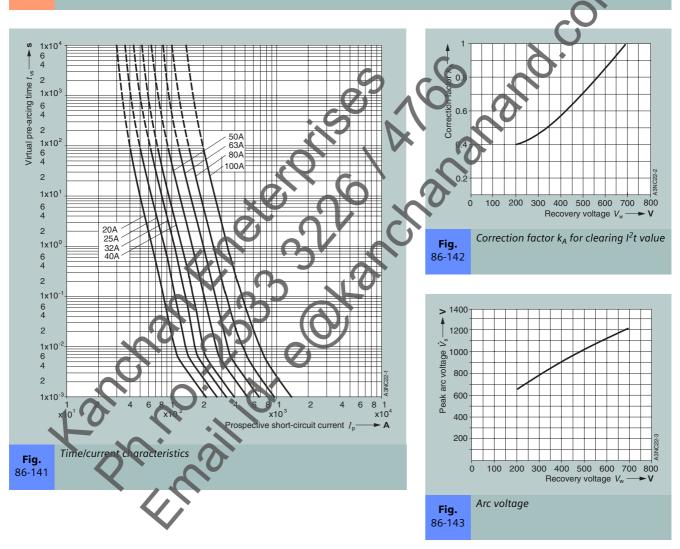



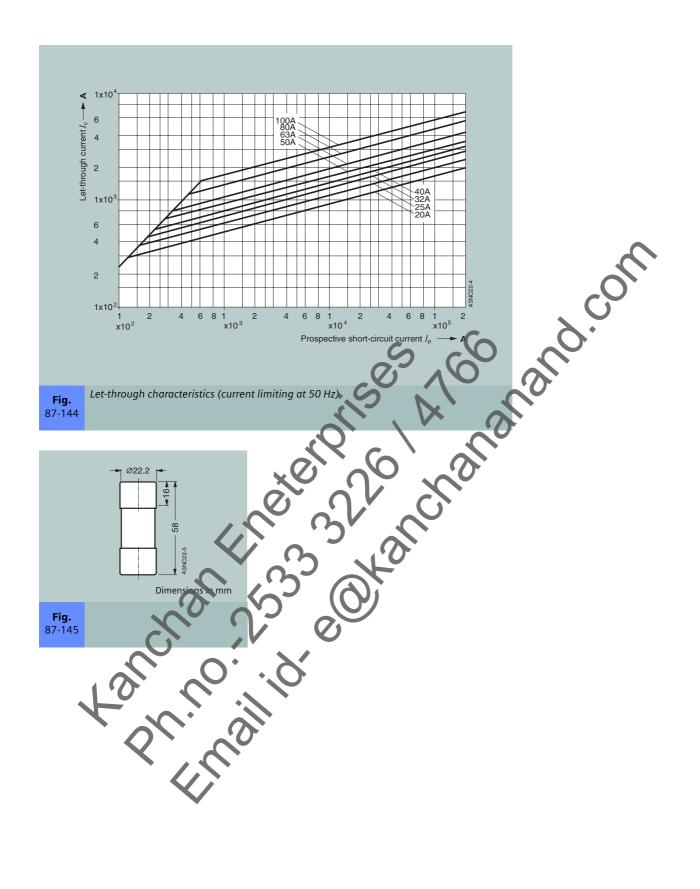

| Order No.                                                                                                                                                                                                                                                                                      |                                                          | 3NC1 504                                  | 3NC1 506                           | 3NC1 516                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------------------------|----------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                           |                                                          | gG                                        | gG                                 | gG                                           |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1 \text{ ms}$ )<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 690<br>4<br>44<br>150<br>-<br>1.0<br>0.02 | 690<br>6<br>60<br>200<br>-<br>1.15 | 690<br>16<br>250<br>850<br>30<br>2.2<br>0.02 |
| Table                                                                                                                                                                                                                                                                                          |                                                          |                                           |                                    |                                              |





Correction factor  $k_A$  for clearing  $I^2t$  value **Fig.** 84-138





## **3.1.27 3NC2 2..** (IEC 60 269-2-1/III, Size 22 x 58)

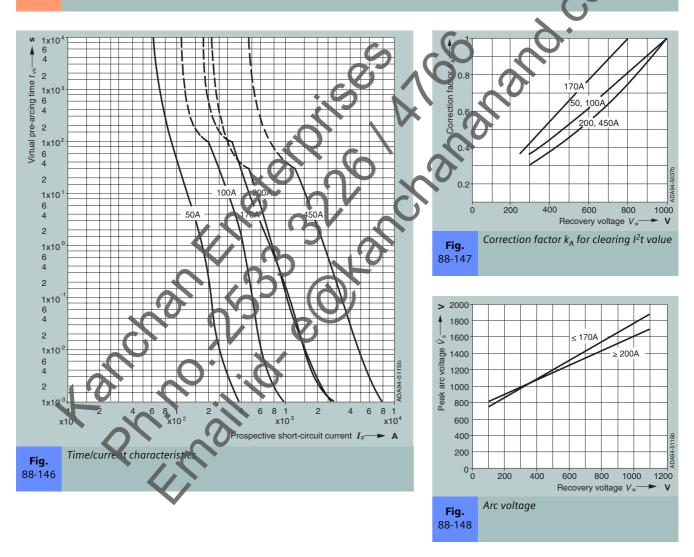


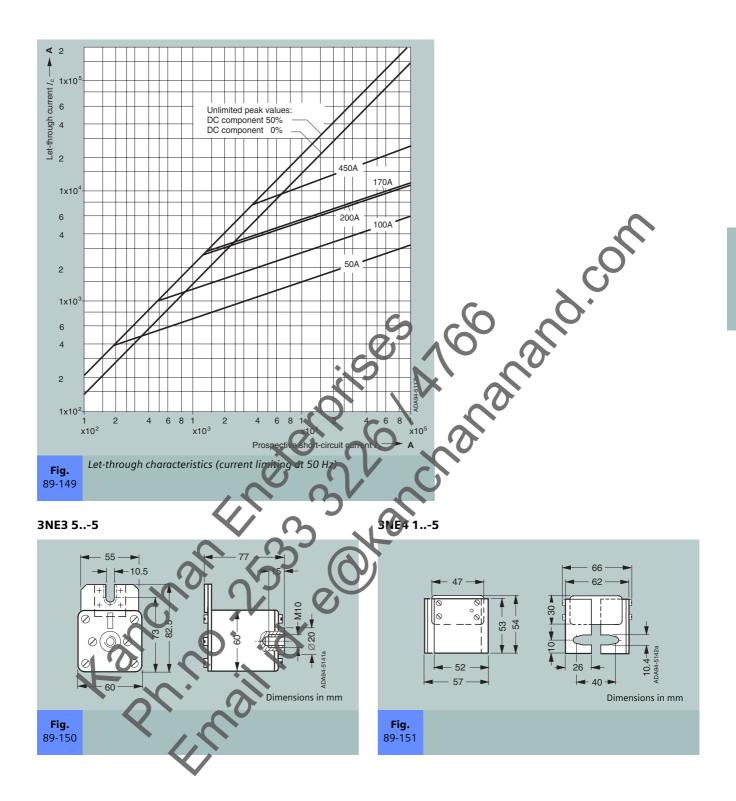
| Order No.                                                                                                                                                                                                                               |                                                     | 3NC2 220                     | 3NC2 225                     | 3NC2 232                     | 3NC2 240                       | 3NC2 250                       | 3NC2 263                        | 3NC2 280                        | 3NC2 200                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                    |                                                     | aR                           | aR                           | aR                           | aR                             | aR                             | aR                              | aR                              | aR                                 |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$ | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K | 690<br>20<br>34<br>370<br>40 | 690<br>25<br>60<br>560<br>50 | 690<br>32<br>95<br>850<br>65 | 690<br>40<br>185<br>1350<br>80 | 690<br>50<br>155<br>1120<br>90 | 690<br>63<br>310<br>2700<br>100 | 690<br>80<br>620<br>5100<br>110 | 600<br>100<br>1250<br>10000<br>110 |
| Cyclic load factor <i>WL</i> Weight, approx.                                                                                                                                                                                            | kg                                                  | -<br>0.06                    | -<br>0.06                    | -<br>0.06                    | 0.06                           | -<br>0.06                      | 0.06                            | 0.06                            | 0.06                               |

**Table** 86-40






### 3.2 SITOR fuse links for special applications

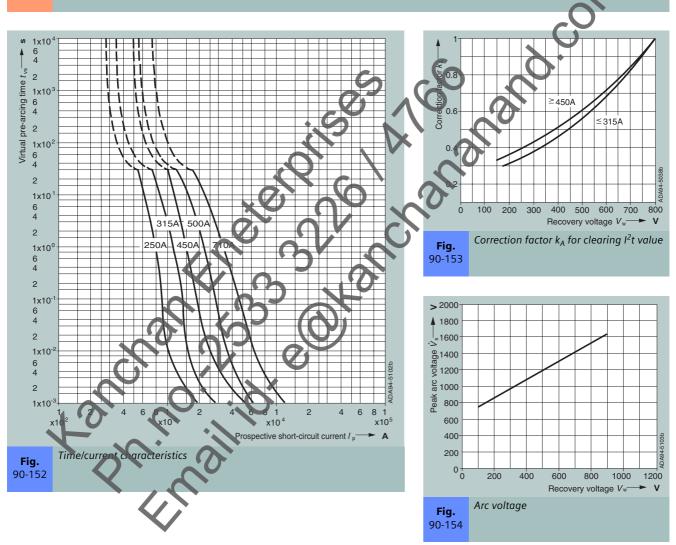

## 3.2.1 3NE3 5..-5, 3NE4 1..-5

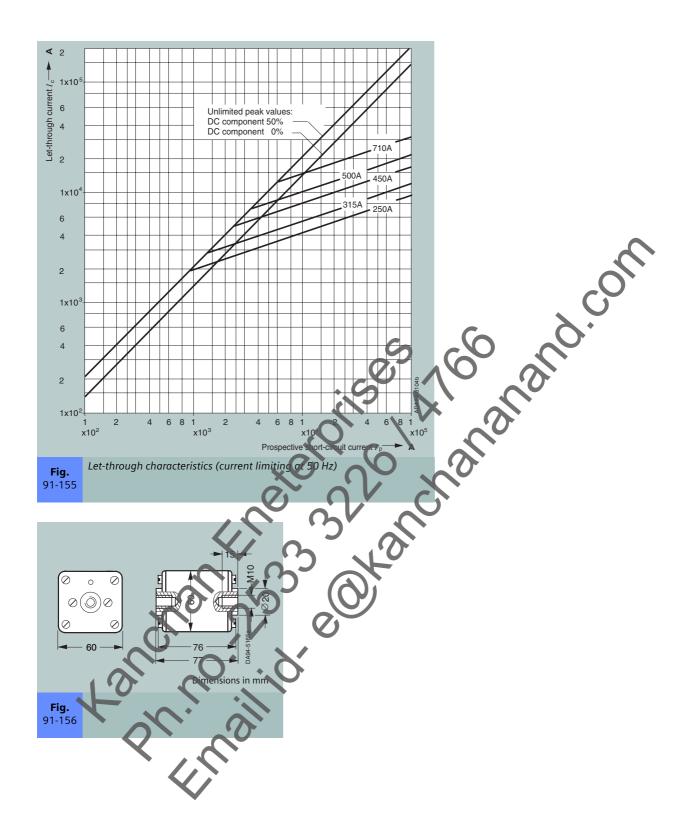
| Order No.                                                                                                                                                                                                                                                                             |                                      | 3NE4 117-5                                            | 3NE4 121-5                                                | 3NE4 146-5                                               | 3NE3 525-5 <sup>1)</sup>                                              | 3NE3 535-5 <sup>1)</sup>                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  |                                      | gR                                                    | aR                                                        | aR                                                       | aR                                                                    | aR                                                                |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>K<br>W | 1000<br>50<br>135<br>1100<br>95<br>20<br>0.85<br>0.28 | 1 000<br>100<br>900<br>7 400<br>135<br>35<br>0.85<br>0.28 | 800<br>170<br>7370<br>60500<br>142<br>43<br>0.85<br>0.28 | 1000<br>200 <sup>2)</sup><br>7150<br>44000<br>75<br>50<br>0.85<br>0.7 | 1000<br>450 <sup>2)</sup><br>64500<br>395000<br>130<br>90<br>0.85 |

**Table** 88-41

- 1) Maximum tightening torque M 10 blind tapping: 35 Nm, screw-in penetration depth  $\geq$  9mm
- 2) Cooling air velocity 0.5 m/s. For natural air cooling, reduced by 5%







### 3.2.2 3NE4 3..-6B, 3NE4 337-6

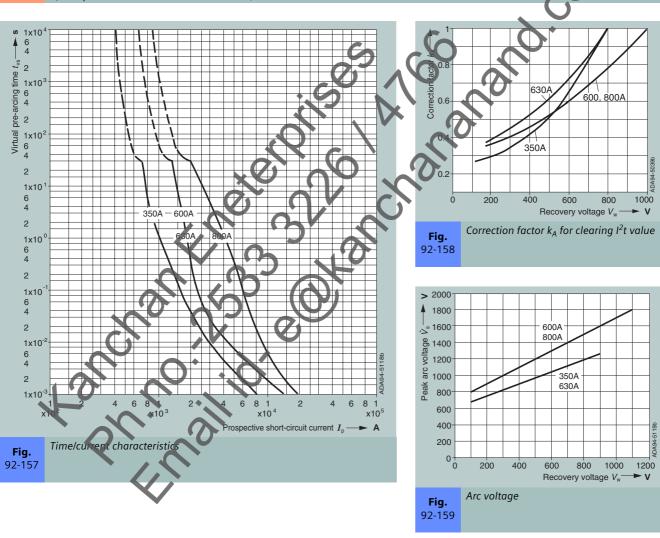
| Order No.                                                                                                                                                                                                                                                                             |                                                          | 3NE4 327-6B <sup>1)</sup>                                 | 3NE4 330-6B <sup>1)</sup>                                 | 3NE4 333-6B <sup>1)</sup>                                   | 3NE4 334-6B <sup>1)</sup>                                   | 3NE4 337-6 <sup>1)</sup>                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  |                                                          | aR                                                        | aR                                                        | aR                                                          | aR                                                          | aR                                                           |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 800<br>250<br>3600<br>29700<br>175<br>105<br>0.85<br>0.65 | 800<br>315<br>7400<br>60700<br>170<br>120<br>0.85<br>0.65 | 800<br>450<br>29400<br>191000<br>190<br>140<br>0.85<br>0.65 | 800<br>500<br>42500<br>276000<br>195<br>155<br>0.85<br>0.65 | 800<br>710<br>142000<br>923000<br>170<br>155<br>0.95<br>0.65 |

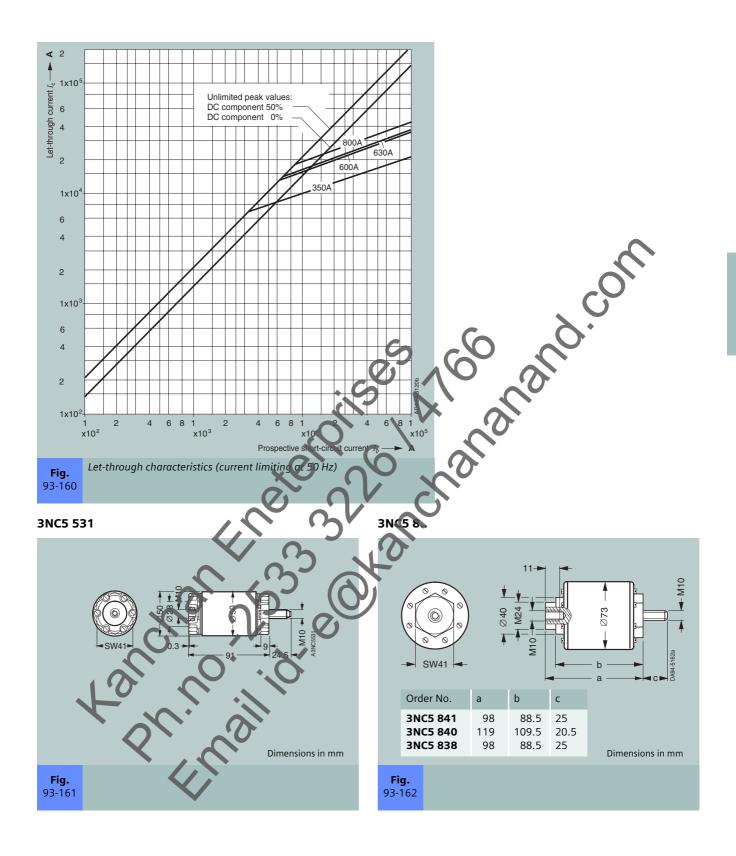
**Table** 90-42

1) Maximum tightening torque M 10 blind tapping: 35 Nm, screw-in penetration depth ≥ 9 mm






#### 3.2.3 3NC5 531, 3NC5 8...

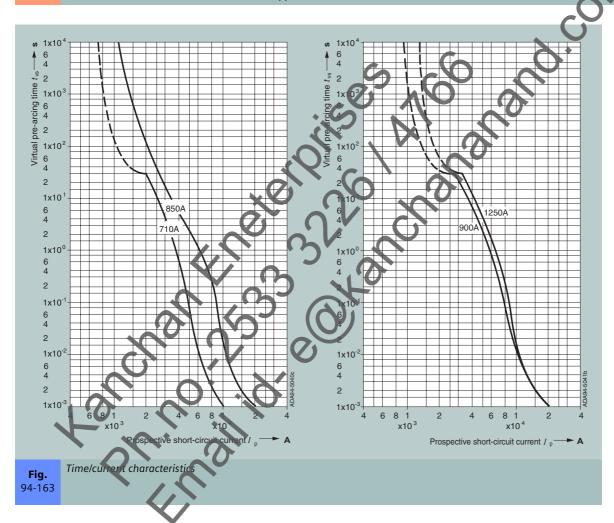

| Order No.                                                                                                                                                                                                                                                                             | rder No.                                                 |                                                                         | 3NC5 841 <sup>1)</sup>                                            | 3NC5 840 <sup>1)</sup>                                             | 3NC5 838 <sup>1)</sup>                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                  |                                                          | aR                                                                      | aR                                                                | aR                                                                 | aR                                                                  |
| Rated voltage $V_n$<br>Rated current $I_n$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 800<br>350 <sup>2)</sup><br>66000<br>260000<br>200<br>80<br>0.9<br>0.67 | 800<br>630 <sup>2)</sup><br>185000<br>888000<br>110<br>145<br>0.9 | 1000<br>600 <sup>2)</sup><br>185000<br>888000<br>110<br>150<br>0.9 | 1000<br>800 <sup>2)</sup><br>360000<br>1728000<br>130<br>170<br>0.9 |

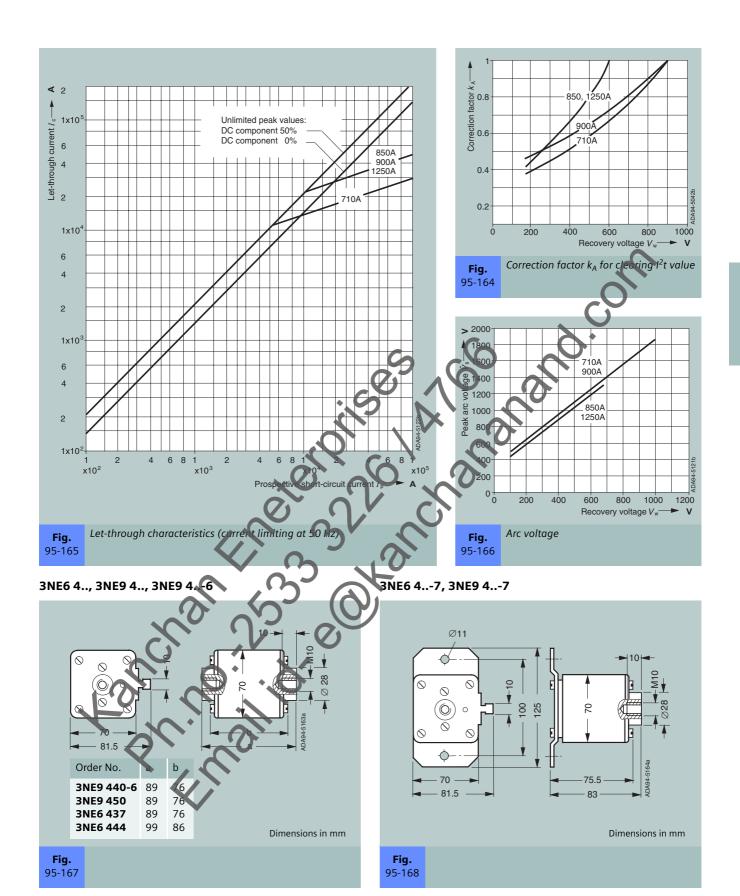
1) Maximum tightening torque:

**Table** 92-43

- M 10 thread (with indicator): 40 Nm
  - M 10 blind tapping: 50 Nm, screw-in penetration depth  $\geq$  9 mm M 24 x 1.5 thread: 60 Nm
- 2) Temperature of the water-cooled busbar, max. +45 °C



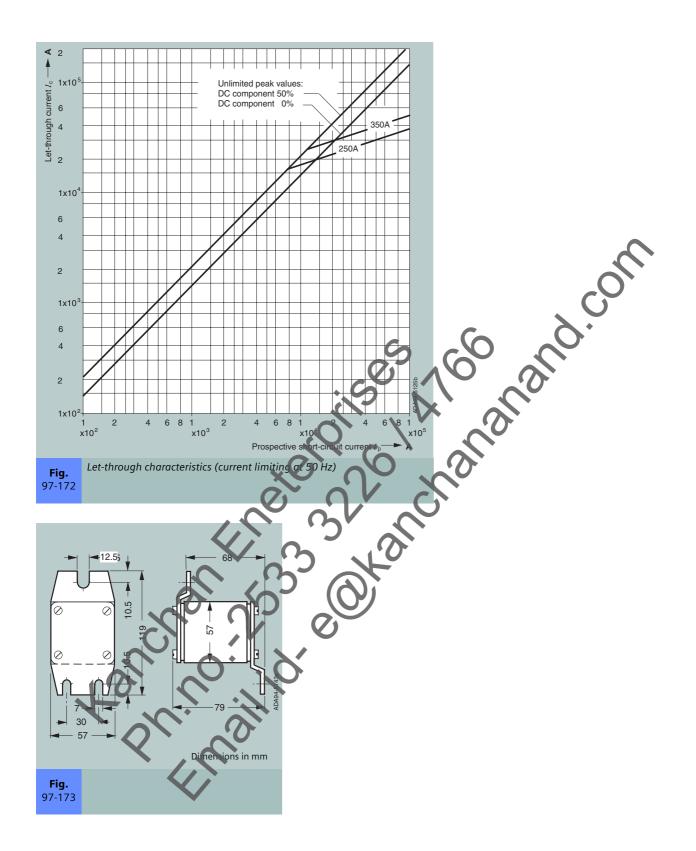




### 3.2.4 3NE6 4.., 3NE9 450, 3NE6 437-7, 3NE9 440-6, 3NE9 450-7

| Order No.                                                                                                                                                                                                                                                                                  |                                                          | 3NE9 440-6                                                | 3NE9 450                                                                  | 3NE6 437                                                                | 3NE6 444                                                                 | 3NE9 450-7                                                                 | 3NE6 437-7                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Utilization category<br>(IEC 60 269)                                                                                                                                                                                                                                                       |                                                          | gR                                                        | aR                                                                        | aR                                                                      | aR                                                                       | aR                                                                         | aR                                                                       |
| Rated voltage $V_n$<br>Rated current $I_n^{-1}$<br>Pre-arcing $I^2t$ value $I^2t_s$<br>( $t_{vs} = 1$ ms)<br>Clearing $I^2t$ value $I^2t_A$ at $V_n$<br>Temperature rise at $I_n$<br>(center of the fuse body)<br>Power dissipation at $I_n$<br>Cyclic load factor $WL$<br>Weight, approx. | V<br>A<br>A <sup>2</sup> s<br>A <sup>2</sup> s<br>K<br>W | 600<br>850<br>400000<br>2480000<br>74<br>85<br>1.0<br>1.0 | 600<br>1250 <sup>2)</sup><br>400000<br>2480000<br>80<br>210<br>0.9<br>1.0 | 900<br>710 <sup>2)</sup><br>100000<br>620000<br>80<br>150<br>0.9<br>1.0 | 900<br>900 <sup>2)</sup><br>400000<br>1920000<br>80<br>170<br>0.9<br>1.1 | 600<br>1250 <sup>3)</sup><br>400000<br>2480000<br>105<br>210<br>0.9<br>1.0 | 900<br>710 <sup>3)</sup><br>100000<br>620000<br>110<br>150<br>0.9<br>1.0 |

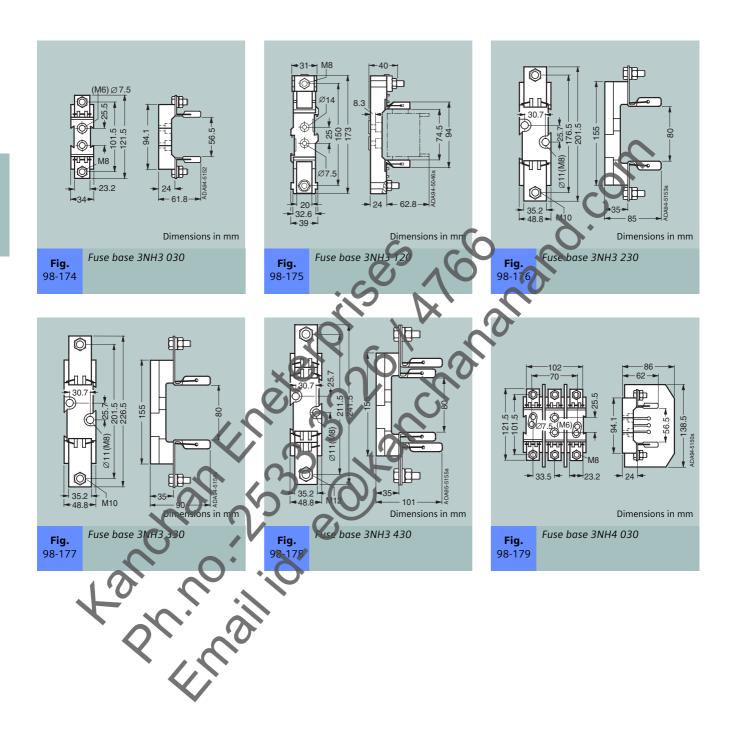
**Table** 94-44

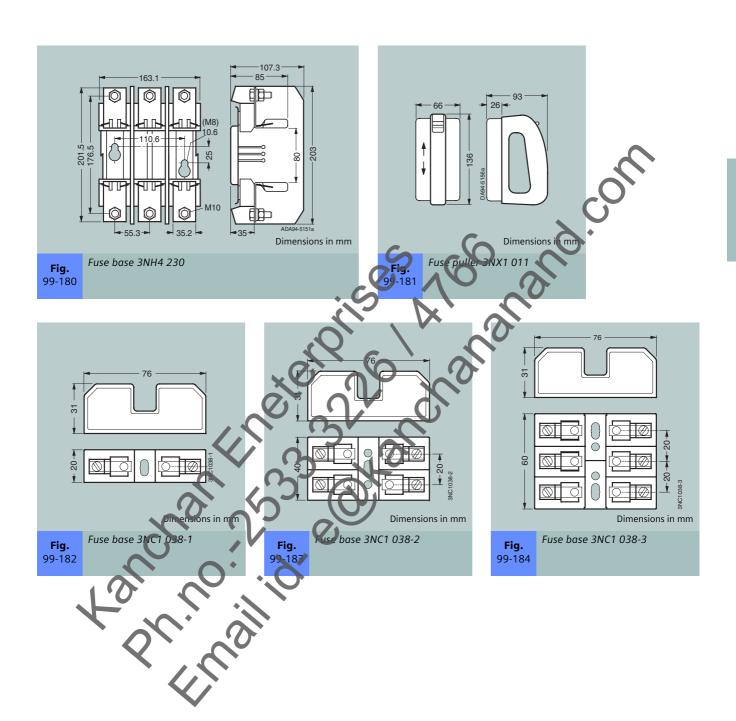
- 1) Maximum tightening torque M 10 blind tapping: 35 Nm, screw-in penetration depth  $\geq$  9 mm
- 2) Cooling air velocity ≥ 2 m/s
- 3) Lower (cooled) connection, max. +60 °C, upper connection (M 10) max. +110 °C

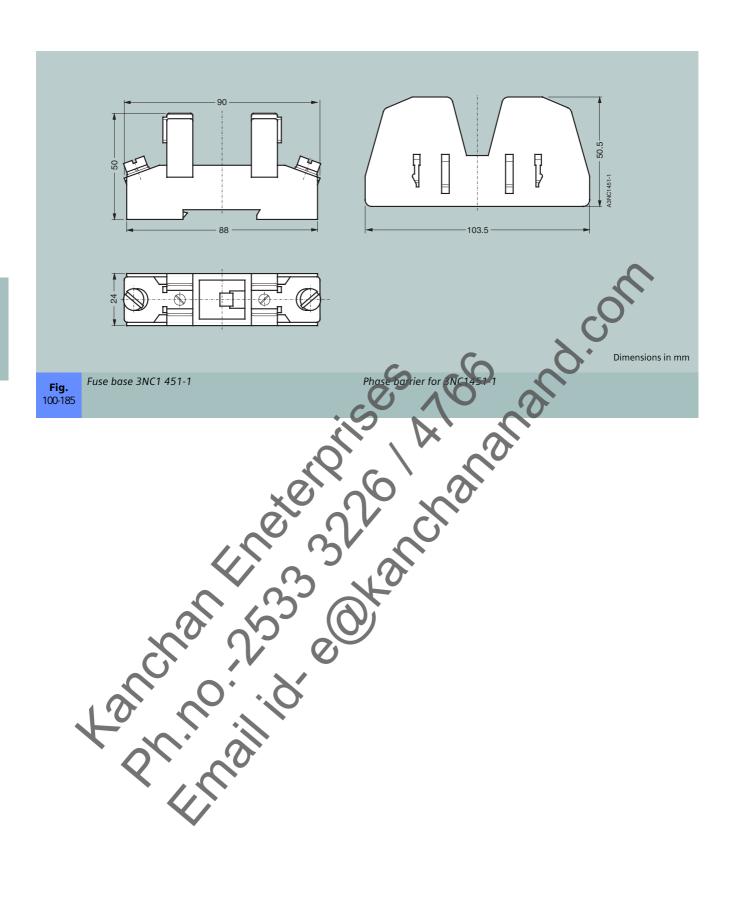


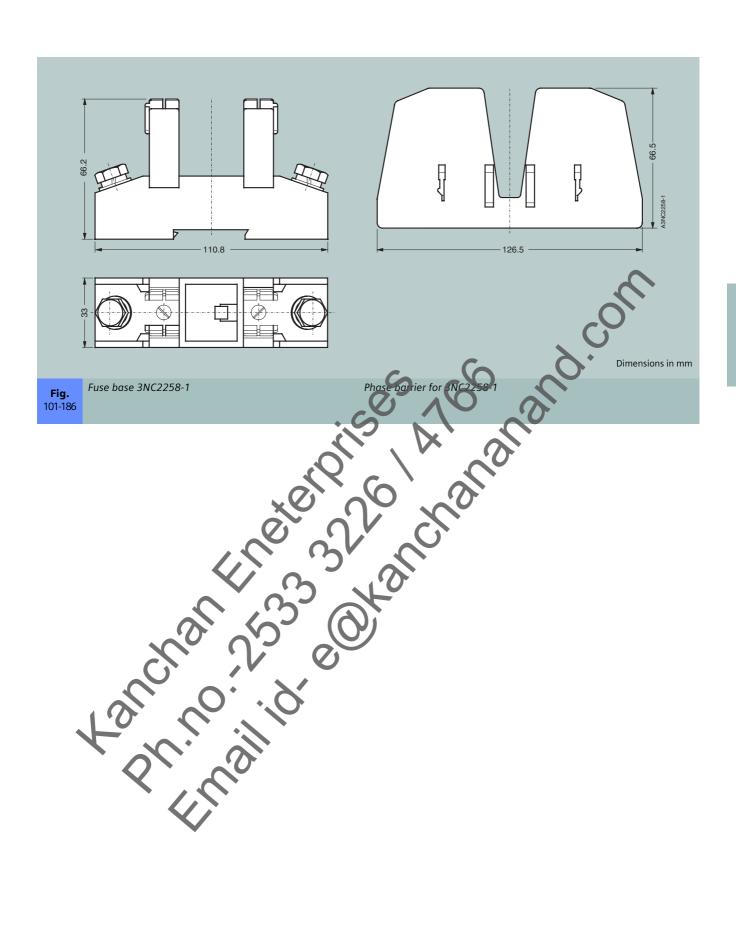



#### 3.2.5 3NC7 3..-2


| Recovery voltage $V_w$ 1x10 $^0$ 6  4  2  1x10 $^1$ 6  4  2  1x10 $^2$ 6  4  2  1x10 $^3$ 7  Prospective short-circuit current $I_p$ A  Recovery voltage $V_w$ 96-170  Fig. 96-170  Fig. 96-170  Correction factor $k_A$ for clearing $I^2t$ value $I_b$ 96-180  Prospective short-circuit current $I_p$ A  Fig. 96-169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Order No.                                                                                                                                                                                                                                                                |                        | 3NC7 327-2                                               |                                                                           | 3NC7 331-2                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| A 2 50 350  **Trime/current ly Pre-arcing Pt value Pt_1 at V_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                        | aR                                                       |                                                                           | aR                                                                                                                         |
| 1 1x10 <sup>4</sup> 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rated current $I_n$ $P_{re}$ re-arcing $I^2t$ value $I^2t_s$ $t_{vs} = 1$ ms) $P_{re}$ clearing $I^2t$ value $I^2t_A$ at $V_n$ $P_{re}$ remperature rise at $I_n$ $P_{re}$ center of the fuse body) $P_{re}$ rower dissipation at $I_n$ $P_{re}$ cyclic load factor $WL$ | A A <sup>2</sup> s K W | 250<br>244000<br>635000<br>45<br>25<br>0.9               |                                                                           | 350<br>550000<br>1430000<br>66<br>32<br>0.9                                                                                |
| Fig.   Time/current characteristics   Time/current character |                                                                                                                                                                                                                                                                          |                        |                                                          |                                                                           |                                                                                                                            |
| Prospective short-circuit current $I_p \rightarrow A$ Fig. Prospective short-circuit current $I_p \rightarrow A$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 4 2 1x10 <sup>-1</sup> 6 4 2 1x10 <sup>-2</sup> 6 4 2 2 4                                                                                                                                                                                                              |                        | 1 2 4 6 8 1                                              | Fig. 96-170  > 2000  1800  3,1600  3,1600  3,1600  1200  201400  800  800 | 100 200 300 400 500 600 700 88  Recovery voltage $V_w \longrightarrow V$ Correction factor $k_A$ for clearing $I^2t$ value |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fig. Time/current characteristics                                                                                                                                                                                                                                        | spective               | e short-circuit current $I_p \longrightarrow \mathbf{A}$ | 200                                                                       | 200 400 600 800 1000 120<br>Recovery voltage $V_w$                                                                         |


96-171





# **Dimension Drawings**

## Accessories









tanchan 153 @ Vanchanand.com

Anchan 153 @ Vanchanand.com

Tophinalistic of the control of the c

## **Technical Description** and Terminology

## **Technical Information**

Rated voltage V<sub>n</sub>

Rated current  $I_n$ , load capacity

I<sup>2</sup>t values

**Time/current characteristics** 

Actual pre-arcing time

Taking into account the pre-loading, residual value RW

Let-through current I<sub>c</sub>

**Rated interrupting capacity** 

Arc voltage  $\hat{U}_{\varsigma}$ 

Power dissipation, temperature rise

Connecting fuse links in parallel and series

DC current applications

Indicators

Accessories

## **Determining the Rated Current**

Determining the rated current I<sub>p</sub> for ageing-free operation with cyclic loads

Selection examples

use Monitoring

Terminology



## **Technical Information**

Fuse links are selected according to the rated voltage, rated current, clearing  $I^2t$  value  $I^2t_A$  and the cyclic load factor taking into account the other conditions specified in Section 4 'Technical Description and Terminology'. Unless otherwise noted, all of the following data and information refer to AC operation at frequencies of between 45 and 62 Hz.

### 4.1 Rated voltage V<sub>n</sub>

The rated voltage of a SITOR fuse link is the RMS value of an AC voltage which is specified in the Ordering and Engineering Data, and the Characteristic Values as well as on the fuse link itself.

The rated voltage of a fuse link should be selected so that it reliably clears the voltage which is driving the short-circuit current. The driving voltage may not exceed a value of  $V_n + 10$ %. It should be noted that the supply voltage  $V_{v0}$  of a converter can increase by 10 %. If two branches of a converter circuit are in series in the short-circuit path, then for an adequately high short-circuit current it can be assumed that the voltage is evenly distributed. In this case (t is imperative that the information and instructions in Section 4.11 2 'fuse link' in series' is carefully observed.

## 4.1.1 Rectifie operation

For converters which only operate in the rectifier mode, the connection voltage  $V_{\rm v0}$  is the criving voltage

### 4.1.2 Inverter operation

For converters which also operate in the inverter mode, inverter commutation faults can occur when a fault develops. In this case, the driving voltage  $V_{\rm WK}$  in the short-circuit is the sum of the supplying DC voltage (e.g., EMF of the OC motor) and the connection voltage on the three-phase side. In order to dimension the ruse link, this sum can be replaced by an AC voltage whose RMS value corresponds to 130% of the connection voltage on the three-phase side  $(V_{\rm WK} = 1.8~V_{\rm VO})$ . The fuse links must be dimensioned so that they reliably clear voltage  $V_{\rm WK}$ .

# Rated current I<sub>n</sub>, loan capacity

The rated current of a SITOR fuse link is the RMS value of an AC current for a frequency range of between 45 and 62 Hz specified in Sections 2 and 3 'Ordering and Engineering Data' and 'Characteristics and Dimension Drawings' as well as the current specified on the fuse link itself.

When fuse links are used with the rated current, the standard operating conditions are as follows:

 Natural air cooling with an ambient temperature of +45 °C

- Connection cross-sections the same as the test cross-sections (refer to Section 4.2.1), when used in l.v.h.b.c. fuse bases and switch disconnectors, refer to Section 2 'Ordering and Engineering Data'
- Current conduction angle of half a period 120 °el
- Continuous maximum load with the rated current

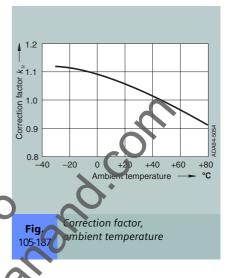
For operating conditions which deviate from these, the permissible load current n' of the SITOR fuse link is determined using the following formula

$$I_n' = k_u \cdot k_q \times k_\lambda \times k_l \times WL \times I_l$$

ΔÜ

- rated current of the fuse link 1)
- k<sub>u</sub>... correction factor, ambient temperature (Section 4.2.2)
- *k*<sub>q</sub>... correction factor, connection cross-section (Section 4.2.3)
- $k_{\lambda}$ ... correction factor, current conduction angle (Section 4.2.4)
- $k_1$ ... correction factor, forced air cooling (Section 4.2.5)

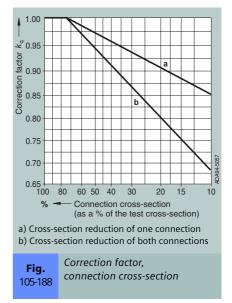
WL...cyclic load factor (Section 4.2.6)


<sup>1)</sup> When using SITOR fuse links in I.v.h.b.c. fuse bases according to IEC/EN 60269-2-1 as well as in fused switch disconnectors and switch disconnectors with fuses, the information in Section 2 'Ordering and Engineering Data' must also be observed.

### 4.2.1 Test cross-sections

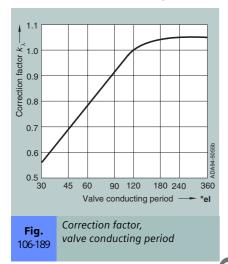
| Rated current I <sub>n</sub> | <b>Test cross-section</b> (series 3NC10, 3NC11, 3NC14, 3NC15, 3NC22, 3NE1, 3NE8 0, 3NE41) | <b>Test cross-section</b> (all of the remaining series) |
|------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------|
| A                            | Cu mm <sup>2</sup>                                                                        | Cu mm <sup>2</sup>                                      |
| 10                           | 1.0                                                                                       | -                                                       |
| 16                           | 1.5                                                                                       | -                                                       |
| 20                           | 2.5                                                                                       | 45                                                      |
| 25                           | 4                                                                                         | 45                                                      |
| 35                           | 6                                                                                         | 45                                                      |
| 40                           | 10                                                                                        | 45                                                      |
| 50                           | 10                                                                                        | 45                                                      |
| 63                           | 16                                                                                        | 45                                                      |
| 80                           | 25                                                                                        | 45                                                      |
| 100                          | 35                                                                                        | 60                                                      |
| 125                          | 50                                                                                        | 80                                                      |
| 160                          | 70                                                                                        | 100                                                     |
| 200                          | 95                                                                                        | (28)                                                    |
| 224                          | -                                                                                         | 150                                                     |
| 250                          | 120                                                                                       | 185                                                     |
| 315                          | 2 x 70                                                                                    | 240                                                     |
| 350                          | 2 x 95                                                                                    | 260                                                     |
| 400                          | 2 x 95                                                                                    | 320                                                     |
| 450                          | 2 x 120                                                                                   | 320                                                     |
| 500                          | 2 x 120                                                                                   | 400                                                     |
| 560                          | 2 x 150                                                                                   | 400                                                     |
| 630                          | 2 x 185                                                                                   | 480                                                     |
| 710                          | 2 x (40 x 5)                                                                              | 560                                                     |
| 800                          | 2 x (50 x 5)                                                                              | 560                                                     |
| 900                          | 2 × (80 x 4)                                                                              | 120                                                     |
| 1000                         | - ,/ 0                                                                                    | 720                                                     |
| 1250                         | - \/                                                                                      | 960                                                     |
| Table 105-46                 | of SITOR Juse links                                                                       |                                                         |

## 4.2.2 Correction factor, ambient temperature $k_{\mu}$


The influence of the ambient temperature on the permissible load placed on the SITOR fuse link is taken into account using correction factor  $k_{\rm u}$  corresponding to the following diagram.

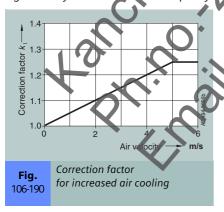


## 2.3 Correction factor, connection cross-section $k_{a}$


The rated current of SITOR fuse links is valid for use with connection cross-sections which correspond to the particular test cross-section (refer to Section 4.2.1).

For reduced connection cross-sections, correction factor  $k_{\rm q}$ , as shown in the following diagram, should be applied.

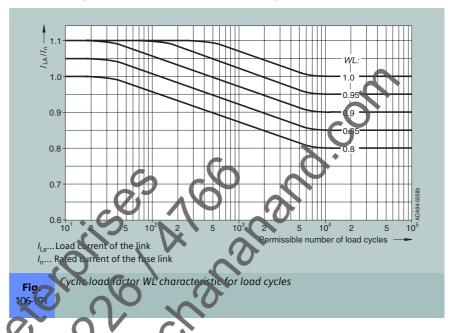



## 4.2.4 Correction factor, current conduction angle $k_{\lambda}$

The rated current of SITOR fuse links is based on a sinusoidal AC current (45 Hz to 62 Hz). In converter operation, the fuses in the branch have to conduct an intermittent current whereby the current conduction angle in most cases is either 180 °el or 120 °el. When the load current has this waveform, the fuse link can still conduct the full rated current. The current must be reduced corresponding to the following diagram for lower current conduction angles.



## 4.2.5 Correction factor for increased air cooling k


With increased air cooling, the load capacity of the fuse links increases with the air velocity; air velocities > 5 m/s significantly increases the load capacity.



### 4.2.6 Cyclic load factor WL

The cyclic load factor WL is a reduction factor which can be used to determine the ageing-free load capacity of a fuse link for any load duty cycle. SITOR fuse links have different cyclic load factors as a result of the mechanical design. The particular cyclic load factor WL for >10000 load cycles (1 hour "on", 1 hour

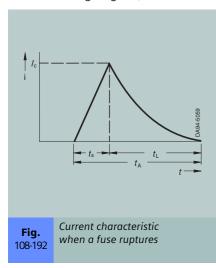
"off") during the expected operating time of the fuse links is specified in Section 3 'Characteristics and Dimension Drawings'. For a lower number of load cycles during the expected operating time of the fuse links, then according to the following diagram, a fuse link with a lower cyclic factor WL is adequate.



For a uniform load (no load duty cycles and no interrupt operations), then a cyclic load factor WL = 1 crin be assumed. For load duty cycles as well as interrupt operations, which last longer than 5 min., and which occur more frequently than 1 x per week then the cyclic load factor WL spe lified for the individual fuse links in Section 3 'Characteristics and Dimension Drawings' should be selected.

#### Fuse currents when used in a converter 4.2.7

The RMS value of the fuse current for the most usual converter circuit configurations can be calculated from the


(smoothed) DC current Id and from the phase current IL according to the following table.

| Single-pulse center-tap circuit (M1) 1.57 $I_d$ — 2-pulse center-tap circuit (M2) 0.71 $I_d$ — 3-pulse center-tap circuit (M3) 0.58 $I_d$ — 6-pulse center-tap circuit (M6) 0.41 $I_d$ — Double 3-pulse center-tap circuit (M3.2) 0.29 $I_d$ — (parallel) (B2) 1.0 $I_d$ 0.71 $I_d$ 0.71 $I_d$ 6-pulse bridge circuit (B2) 1.0 $I_d$ 0.71 $I_d$ 0.72 $I_d$ 0.73 $I_d$ 0.73 $I_d$ 0.74 $I_d$ 0.74 $I_d$ 0.75 $I_d$ 0.75 $I_d$ 0.75  | Single-pulse center-tap circuit (M1) 1.57 $I_d$ — 2-pulse center-tap circuit (M2) 0.71 $I_d$ — 3-pulse center-tap circuit (M3) 0.58 $I_d$ — 6-pulse center-tap circuit (M6) 0.41 $I_d$ — 0.00 0.29 $I_d$ — 0.29 $I_d$ — 0.71 $I_d$ | Phase current (phase fuse)   Cornect (phase fuse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single-pulse center-tap circuit (M1) 1.57 I <sub>d</sub> — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single-pulse center-tap circuit (M1) 1.57 I <sub>d</sub> — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Single-pulse center-tap circuit (M1)   1.57 $I_d$   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ingle-pulse center-tap circuit (M1) 1.57 I <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onvoytor sirguit sanfia                                                                                                  |                      | RMS value of the                                                  | RMS value of the    |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|---------------------|-----|
| 2-pulse center-tap circuit  3-pulse center-tap circuit  6-pulse center-tap circuit  (M3)  0.58 $I_d$ -  6-pulse center-tap circuit  (M6)  0.41 $I_d$ -  Double 3-pulse center-tap circuit  (M3.2)  0.29 $I_d$ -  (parallel)  2-pulse bridge circuit  (B2)  1.0 $I_d$ 0.71 $I_d$ 6-pulse bridge circuit  (B6)  0.82 $I_d$ 0.71 $I_d$ 0.71 $I_d$ 0.71 $I_d$ 0.71 $I_d$ 0.71 $I_d$ Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-pulse center-tap circuit  3-pulse center-tap circuit  6-pulse center-tap circuit  Couble 3-pulse center-tap circuit  (M6)  0.41 $I_d$ -  0.29 $I_d$ -  (parallel)  2-pulse bridge circuit  (B2)  1.0 $I_d$ 0.71 $I_d$ 6-pulse bridge circuit  (B6)  0.82 $I_d$ 0.71 $I_d$ 1.0 $I_d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-pulse center-tap circuit 3-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - 5-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - Couble 3-pulse center-tap circuit (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.58 I <sub>d</sub> - 5-pulse center-tap circuit (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.58 I <sub>d</sub> - (M3.2) 0.71 I <sub>d</sub> 0.71 I <sub>d</sub> (M3.2) 0.58 I <sub>d</sub> 0.58 I <sub>d</sub> Single-phase bi-directional circuit (W1) 1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47 | 2-pulse center-tap circuit 3-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - 6-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - Double 3-pulse center-tap circuit (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.29 I <sub>d</sub> -  2-pulse bridge circuit (B2) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> (B3) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> (Single-phase bi-directional circuit (W1) 1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-pulse center-tap circuit 3-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - 6-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - Double 3-pulse center-tap circuit (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.29 I <sub>d</sub> -  2-pulse bridge circuit (B2) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> (B3) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> Single-phase bi-directional circuit (W1) 1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-pulse center-tap circuit 3-pulse center-tap circuit (M3) 0.58 I <sub>d</sub> - 6-pulse center-tap circuit (M6) 0.41 I <sub>d</sub> - Double 3-pulse center-tap circuit (M3.2) 0.29 I <sub>d</sub> - (M3.2) 0.29 I <sub>d</sub> -  2-pulse bridge circuit (B6) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> (Single-phase bi-directional circuit (W1) 1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47  Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | repulse center-tap circuit pulse center-tap circuit (M3) 0.58 l <sub>d</sub> - pulse center-tap circuit (M6) 0.41 l <sub>d</sub> - ouble 3-pulse center-tap circuit (M3.2) 0.29 l <sub>d</sub> - pulse bridge circuit pulse bridge circuit (M6) 0.41 l <sub>d</sub> - 0.29 l <sub>d</sub> - pulse bridge circuit pulse bridge circuit (M6) 0.82 l <sub>d</sub> 0.58 l <sub>d</sub> 0.58 l <sub>d</sub> 0.58 l <sub>d</sub> 0.71 | onverter circuit configuration                                                                                           |                      | phase current                                                     | branch current      |     |
| 6-pulse bridge circuit (B6) $0.82 I_d$ $0.58 I_d$ Single-phase bi-directional circuit (W1) $1.0 I_L$ $0.71 I_L$ Table Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-pulse bridge circuit (B6) $0.82 I_d$ $0.58 I_d$ Single-phase bi-directional circuit (W1) $1.0 I_L$ $0.71 I_L$ Table Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-pulse bridge circuit (B6) 0.82 I <sub>d</sub> 0.58 I <sub>d</sub> 0.71 I <sub>L</sub> Table 107-47  Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                    | 6-pulse bridge circuit  Single-phase bi-directional circuit  (W1)  1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47  Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-pulse bridge circuit  Single-phase bi-directional circuit  (W1)  1.0 I <sub>L</sub> 0.71 I <sub>L</sub> Table 107-47  Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6-pulse bridge circuit  (B6)  0.82 I <sub>d</sub> 0.58 I <sub>d</sub> 0.71 I <sub>L</sub> Table 107-47  Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | repulse bridge circuit  (B6)  0.82 I <sub>d</sub> 1.0 I <sub>L</sub> 0.71 I <sub>L</sub> 1.0  | -pulse center-tap circuit<br>-pulse center-tap circuit<br>-pulse center-tap circuit<br>louble 3-pulse center-tap circuit | (M2)<br>(M3)<br>(M6) | 0.71 I <sub>d</sub><br>0.58 I <sub>d</sub><br>0.41 I <sub>d</sub> | -<br>-<br>-<br>-    |     |
| Table Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fuse currents when used in a converter    Table   107-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fuse currents when used in a converter    Table   107-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fuse currents when used in a converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 107-47  Fuse currents when used in a converter 107-47  Fuse currents when used in a converter 107-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fuse currents when used in a converter of the converter o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |                      |                                                                   |                     |     |
| Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charles Charle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ingle-phase bi-directional circuit                                                                                       | (W1)                 | 1.0 I <sub>L</sub>                                                | 0.71 I <sub>L</sub> |     |
| Alexandra for the second secon | Wall hos Of all  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Faucho Migge Of Authority Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fall Sold Sold Sold Sold Sold Sold Sold So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Taurio i igi so partingi so pa | Ashing the solution of the sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |                      |                                                                   | SAC                 | Mal |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charles Solver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Asichal Maria Charles | Fall Vigo Of All Control of the Cont | Ash line in the second of the  | Talling Solvano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                      | ie o                                                              | 0 0                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Asic 10.19, 60, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tallogijo, po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Asir Constitution (Constitution of Constitution of Constitutio of Constitution of Constitution of Constitution of Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                                                                                                                        |                      | 3 N                                                               | allo                |     |
| Tallolo, 19,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                      |                                                                   |                     |     |

### 4.3 I<sup>2</sup>t values

When a short-circuit develops, the current through the fuse link increases, during the pre-arcing time  $t_{\rm s}$  up to the let-through current  $I_{\rm c}$  (peak melting current).

During the arc time  $t_L$  the arc forms and the short-circuit current is cleared (refer to the following diagram).



The integral of the square of the current over the complete clearing time  $(t_s+t_L)$  – also known as the clearing  $I^2t$  value, defines the heat which the semiconductor component is subject to, which is to be protected, during the interrupt operation.

$$(\int I^2 dt)$$

In order to provide adequate protection the clearing  $I^2t$  value of the fuse link must be less than the  $I^2t$  value of the semiconductor component. The clearing  $I^2t$  value of the fuse link practically decreases the same as the  $I^2t$  value of a semiconductor component with increasing temperature. I.e. increasing pre-loading. This means that it is sufficient to compare the  $I^2t$  values in the non-loaded (cold) condition.

The clearing  $I^2t$  value ( $I^2t_A$ ) is the sum of the pre-arcing  $I^2t$  value ( $I^2t_s$ ) and the arcing  $I^2t$  value ( $I^2t_L$ ).

$$(\int l^2 dt)$$
 (semiconductor,  
 $t_{\rm vj} = 25^{\circ}$ C,  $t_{\rm p} = 10$  ms)  $> (\int l^2 t_A)$   
(fuse link)

## 4.3.1 Pre-arcing $I^2t$ value $I^2t_s$

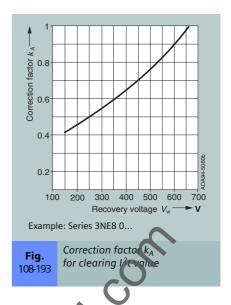
The pre-arcing  $I^2$ t value can be calculated for any time from the value pairs of the time/current characteristic of the fuse link.

For decreasing pre-arcing times, the pre-arcing  $I^2t$  value goes to a lower limit value where, during melting, almost no heat is dissipated from the notches of the fuse element to the environment. The pre-arcing  $I^2t$  values, specified in Sections 2 and 3 of the 'Ordering and Engineering Data' und 'Characteristics and Dimension Drawing' correspond to the pre-arcing time of  $t_{vs} = 1$  ms.

## 4.3.2 Arcing I2t value I2t

While the pre-arcing  $I^2t$  value is a characteristic of the fuse link, the arcing  $I^2t$  value depends on the creat data, and more precisely

- $\bullet$  on the recovery voltage  $V_{v}$
- on the power factor cos φ of the short-circuit loop
- on the prospective current I<sub>p</sub> (current at the location will ere the fuse link is mounted if this is bypassed)


The maximum of the arcing  $I^2$ t value is reached, depen ling on the fuse type, at a current of petween 10  $I_0$  up to 30  $I_0$ .

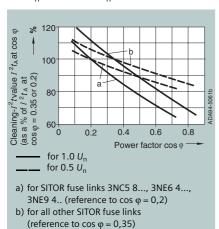
# 4.3.3 Clearing $I^2t$ value $I^2t_A$ , correction factor $k_A$

The clearing  $I^2t$  values of the fuse links are specified in Section 3 'Characteristics and Linension Drawings' for rated voltage  $V_n$ . The correction factor  $k_A$  should be taken into account when determining the clearing- $I^2t$  value for a recovery voltage  $V_w$ .

$$V_A^2 t_A \text{ (for } V_w) = I^2 t_A \text{ (for } V_p) \times k_A$$

The "Correction factor  $k_{\rm A}$ " characteristic (refer to the following diagram) is specified for the individual fuse series in Section 3 'Characteristics and Dimension Drawing'. The clearing  $I^2t$  values, determined in this fashion, are valid for prospective currents  $I_{\rm p} \ge 10 \times I_{\rm n}$  and  $\cos \varphi = 0.35$ .




# 4.3.4 Taking into account the recovery voltage V<sub>w</sub>

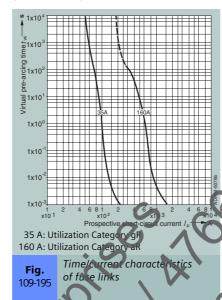
The recovery voltage  $V_{
m w}$  is obtained from the voltage which drives the short-circuit current. The driving voltare is, in most fault situations, the same s the supply voltage  $V_{v0}$ . For inverter commutation faults, it is 180% of the supply voltage  $V_{v0}$  (refer to Section 4.1 'Rated voltage'). If two branches of a converter circuit are located in the short-circuit loop, and there are therefore two fuse links in series, when the short-circuit current is sufficiently high (refer to Section 4.11.2), then it can be assumed that the voltage will be evenly distributed. This means  $V_{\rm w} = 0.5 V_{\rm v0}$  or, for inverter commutation faults,  $V_{\rm w} = 0.9 \ V_{\rm v0}$ .

## **4.3.5** Influence of the power factor cos φ

The data provided in Section 3 'Characteristics and Dimension Drawings' for the clearing  $I^2t$  values ( $I^2t_A$ ) refers to a power factor of  $\cos \varphi = 0.35$  (exception: For SITOR fuse links 3NC5 8..., 3NE6 4..., 3NE9 4..., then  $\cos \varphi = 0.2$  applies).

The following diagram shows the relationship between the clearing  $I^2t$  values and the power factor  $\cos \varphi$  at 1.0  $V_n$  and at 0.5  $V_n$ .




**Fig.** 109-194

Clearing  $I^2t$  value  $I^2t_A$  for SITOR fuse links as a function of power factor  $\cos \varphi$ 

taucus;

## 4.4 Time/current characteristics

In the following diagram the time/current characteristics shown indicate the time up to melting for the unloaded fuse link from the cold state (max. +45 °C).



If the time/current characteristic is shown as dotted line in the long time range  $(t_{vs} > 10 s)$  (fuse links, utilization ategory aR), then this represents the limit of the permissible overload from the cold condition. If the dotted section of the characteristic is exceeded, there is a danger that the ceramic body of the ise link could be damaged. The fuse link can only be used as short-circuit protection. In this case an additional protective device (overload relay, circuit breaker) is required to provide overload protection. For closed-loop controlled converter units the closed-loop current limiting control is sufficient.

If the time/current characteristic is a solid line over the complete time range (fuse links, utilization Category gR or gS), then the fuse link can interrupt the current over the complete time range. This means that it can be used for overload and short-circuit protection.

#### 4.5 Actual pre-arcing time

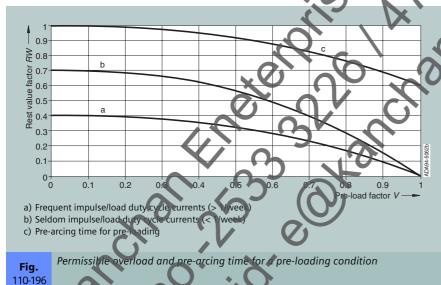
The virtual pre-arcing time  $t_{vs}$  is specified in the time/current characteristic as a function of the prospective current. This is a value which is valid for a squarewave current  $(di/dt) = \infty$ ).

For pre-arcing times  $t_{\rm vs} < 20$  ms, the virtual pre-arcing time  $t_{\rm vs}$  deviates from the actual pre-arcing time  $t_{\rm s}$ . The actual pre-arcing time can (depending on the current rate-of-rise) be several milliseconds longer.

In the range of several milliseconds, over which time the increase of the short-circuit current can be considered to be linear, for a sin soil al current increase and at 50 Hz, the actual pre-arcing time is given by:

$$t_s = \frac{3xI^2t_s}{I_s^2}$$

## 4.6 Taking into account the pre-loading condition, residual value factor RW


A pre-loading condition of the fuse link reduces the permissible overload duration and the pre-arcing time.

The residual value factor RW can be used to determine the time for which a fuse link can be operated, ageing-free at any overload current  $I_{La}$  during a periodic or non-periodic load duty cycle above the previously determined permissible load current  $I_n$ .

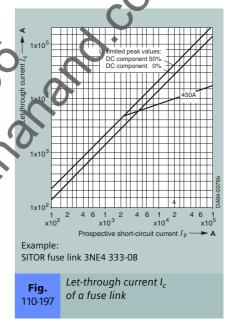
The residual value factor RW depends on the pre-loading condition V ( $I_{\rm rms}$  RMS fuse current during the load duty cycle to the permissible load current  $I_{\rm n}$ ')

$$V = \frac{I_{rms}}{I_{n'}}$$

as well as the frequency of the overload conditions (refer to the following diagram, characteristics a and b).



Permissible overload duration = residual value (ac or RW x pre-arcing time  $t_{vs}$  (time/current characteristic)

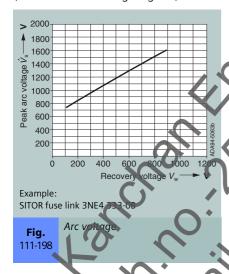

The reduction of the pre-arcing time of a fuse link for a specific pre-oar condition can be taken from characteristic c.

Pre-arcing time = residual value factor RW x pre-arcing time  $t_{vs}$  (time/current characteristic)

#### 4.7 Let-through current I<sub>c</sub>

The let-through current  $I_c$  can be determined from the let-through characteristics (current limiting at 50 Hz) specified for the particular fuse link in Section 3 'Characteristics and Dimension Drawings'. The let-through current is dependent on the prospective current and the DC current element when the short-circuit actually occurs (instant of switch-on).

The let-through current  $I_{\rm c}$  of a fuse link as a function of the prospective short-circuit current  $I_{\rm p}$  is shown in the following diagram using as an example a SITOR fuse link 3NF4 333-0B.



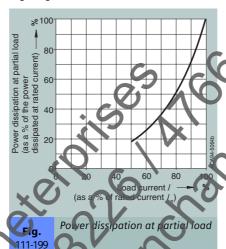

#### 4.8 Rated interrupting capacity

The rated interrupting capacity of all SITOR fuse links is at least 50 kA if higher values are not specified in Section 3 'Characteristics and Dimension Drawings'. The data is valid for a test voltage of  $1.1 \times V_n$ , 45 to 62 Hz and  $0.1 \le \cos \phi \le 0.2$ . For application voltages which lie below the rated voltage as well as for rated currents of the fuse links which lie below the maximum rated current of a fuse series, the interrupting capacity lies significantly above the rated interrupting capacity.

#### 4.9 Arc voltage $V_s[\hat{U}_s]$

When extinguishing, an arc voltage  $V_{\rm s}$  [ $\hat{U}_{\rm s}$ ] occurs at the connections of the fuse link. This arc voltage can significantly exceed the connection voltage. The magnitude of the arc voltage depends on the design of the fuse link and the magnitude of the recovery voltage. It is shown in the form of a characteristic as a function of the recovery voltage  $V_{\rm w}$  (refer to the following diagram).




The arc voltage of ccu's at the semicon ductor components, which are no located in the short-circuit loop, as blocking voltage. In order to avoid a voltage-related hazard, the arc voltage may not exceed the peak blocking voltage of the semiconductor component.

## 4.10 Power dissipation, temperature rise

When the rated current is reached, the fuse elements of SITOR fuse links have a significantly higher temperature than the fuse elements of cable protection fuse links.

The power dissipation, specified in Section 3 'Characteristics and Dimension Drawings' is the upper spread value if the fuse link is conducting the rated current.

The power dissipation decreases at partial load corresponding to the following diagram.



The temperature nee, specified in section 3 'Characteristics and Dimension Drawings' is sall d for the specified reference point and was determined when testing the fuse link (test setup in accordance with DIN VDE 0636, Part 23 and 15C 269-4).

## 4.11 Connecting fuse links in parallel and series

#### 4.11.1 Parallel circuit

If several semiconductor components and therefore fuse links are connected in parallel in a branch when an internal short-circuit develops, then only the fuse link connected in series with the defective semiconductor component ruptures. This fuse link must extinguish the full connection voltage.

If it is necessary increase the current, two or several fuse links connected in parallel can be assigned to a semiconductor component without having to reduce the current. The resulting clearing- $I^2t$  value then increases to the square of the number of itse links connected in parallel. Only fuse links of the same type should be used in order to avoid that the current is unevenly distributed.

#### 4.11.2 Fuse links in series

There are two types of series circuits:

- Series circuit in the converter branch
- Two fused converter branches conduct the short-circuit current in series

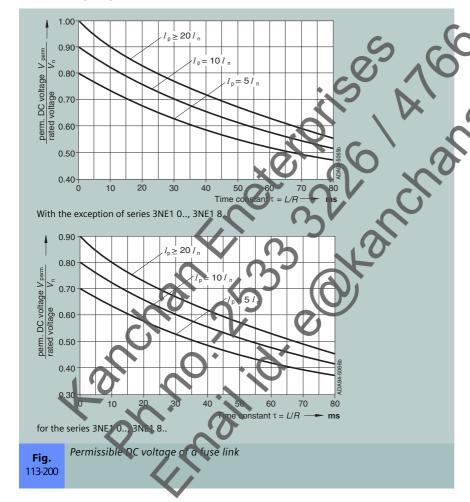
In both of these cases it can only be assumed that the voltage will be evenly distributed if the pre-arcing time of the SITOR fuse link does not exceed the values specified in the following Table.

Table 12-4

|   | SITOR<br>fuse links                            | Maximum pre-arcing<br>time for an even<br>voltage distribution |
|---|------------------------------------------------|----------------------------------------------------------------|
|   | Order No.                                      | ms                                                             |
|   | 3NC1 0<br>3NC1 1<br>3NC1 4<br>3NC1 5<br>3NC2 2 | 10<br>10<br>10<br>10<br>10                                     |
|   | 3NC2 4<br>3NC5 8<br>3NC7 3<br>3NC8 4           | 40<br>10<br>10<br>10                                           |
|   | 3NE1 0<br>3NE1 2<br>3NE1 3<br>3NE1 4<br>3NE1 8 | 10<br>10<br>10<br>20<br>10                                     |
|   | 3NE3 2<br>3NE3 3<br>3NE3 4<br>3NE3 5<br>3NE3 6 | 10<br>10<br>20<br>20<br>20<br>20                               |
|   | 3NE4 1<br>3NE4 3                               | 10                                                             |
|   | 3NE5 4<br>3NE5 6                               | 20<br>20                                                       |
|   | 3NE6.4.                                        | 10                                                             |
| ( | 3NE7 4.<br>3NE7 6                              | 20 20                                                          |
| 1 | 3NE8 0                                         | 19                                                             |

Maximum pre-arcing times for even voltage distribution

The cooling conditions of the fuse links connected in series should be approximately the same. If faults are to be expected where the specified pre-arcing times are exceeded due to the slower increase in the current-rate-of-rise, then it can no longer be assumed that the voltage will be evenly distributed. In this case, the fuse links should be dimensioned as far as the voltage is concerned so that one fuse link alone can extinguish the full connection voltage.


As far as possible a series circuit of fuse links in the branch of a converter circuit should be avoided. Instead, a single fuse link should be used with the correspondingly higher rated voltage.

#### 4.12 DC current applications

When fuse links are used in DC circuits, in some cases, other data apply than those specified for AC current in Section 3 'Characteristics and Dimension Drawings'.

#### 4.12.1 Permissible DC voltage

The permissible DC voltage  $V_{\text{perm}}$  of the fuse link depends on the rated voltage  $V_n$ , the time constant  $\tau = L/R$  in the DC link and the prospective current  $I_p$ . The permissible DC voltage is referred to the rated voltage  $V_n$  and is specified as a function of time constant  $\tau$  and the prospective current is a parameter (refer to the following diagram).



#### 4.12.2 Clearing $I^2t$ value $I^2t_A$

The clearing  $I^2t$  value  $I^2t_A$  depends on the voltage, the time constant  $\tau = L/R$  and the prospective current  $I_p$ . It is calculated using the  $I^2t_A$  value at the rated voltage  $V_n$ , specified in Section 3 'Characteristics and Dimension Drawings' for the particular fuse link and correction factor  $k_A$ . However, instead of the recovery voltage  $V_w$ , that DC voltage is inserted against which the fuse link should switch.

The clearing  $I^2t$  value thus determined applies under the following prerequisites:

- Time constant L/R  $\leq$  25 ns for  $I_p \geq$  20  $I_p$
- Time constant L R  $\leq$  10 ms for  $I_p = 10 I_n$

The clearing  $^3$  tvalues increase by 20 % • For  $I_p \ge 20 I_n$  and a time constant L/R = 60 ms

• For  $p = 0 I_n$  and a time constant L/R = 35 ms

#### 4.)2.3 Arc voltage Û,

The arc voltage  $\hat{U}_s$  is determined from the characteristic for the particular fuse link specified in Section 3 'Characteristics and Dimension Drawings'. However, instead of the recovery voltage  $V_w$ , that DC voltage is inserted against which the fuse link should switch.

The arc voltage thus determined applies under the following prerequisites:

- Time constant L/R  $\leq$  20 ms for  $I_p \geq$  20  $I_n$
- Time constant L/R  $\leq$  35 ms for  $I_p = 10 I_p$

The clearing  $I^2t$  values increase by 20 %

- For  $I_p \ge 20 I_n$  and a time constant L/R = 45 ms
- For  $I_p = 10 I_n$  and a time constant L/R = 60 ms

#### 4.13 Indicators

An indicator is used to show when the fuse link has ruptured. SITOR fuse links have an indicator whose response voltage lies between 20 V ( $V_n \le 1000$  V) and 40 V ( $V_n > 1000$  V).

#### 4.14 Accessories

#### 4.14.1 Fuse bases, fuse pullers

Some of the SITOR fuse links can be used in the appropriate fuse bases. The matching fuse bases (single-phase and three-phase) as well as the associated fuse pullers are listed in the Tables in Section 2.3 'Accessories' and Section 3 'Characteristics and Dimension Drawings'.

#### Note

Even if the rated voltage and/or current of the fuse bases are lower than that of the associated fuse link, the values of the fuse link apply.

## 4.14.2 Fused switch disconnectors, switch disconnectors with fuses

Certain series of SITOR fuse links are suitable for use in fused switch disconnectors 3NP4 and 3NP5 (refer to Catalog NS K) and in switch disconnectors with fuses 3KL and 3KM (refer to Catalog NS K).

The following points must be carefully observed when fuse links are used in switch disconnectors:

- The power dissipation of SITOR fuse links is higher when compared to l.v.h.b.c. cable protection fuses. This means that the permissible load current of the fuse links must in some cases be reduced (also refer to Section 2.3 'Accessories'.
- Fuse links with rated currents I<sub>n</sub> > 63 I may then not be used as overload protection, if they correspond to duty Class gR.

#### Note

taurojio, spe

All 3NE1... is selinks with roted current  $I_n$  from 16 A to 850 A and utilization Categories gR and qS can, on the other hand, be used to provide overload projection

- The rated voltage and rated insulation voltage of the switch disconnectors must correspond, as a minimum, to the voltage being used.
- When using 3NE3 2.., 3NE3 3.., 3NE4 3.., 3NC2 4.. and 3NC8 4.. fuse links, the switching capacity of fused switch disconnectors may not be fully utilized due to the slotted knife contacts. It is permissible to occasionally switch currents up to the rated current of the fuse links.
- 3NE4 1.. fuse links when used in fused switch disconnectors may only be occasionally actuated and only when in a no-current condition as the fuse contact blades are subject to significant mechanical stresses.

The individual ruse links are assigned to the various switch disconnectors in Section 2.3 'Accessories'. The permissible load capacity of the fuse link and the recurred connection cross-section are also specified here.

## **Determining the Rated Current**

## 4.15 Determining the rated current $I_n$ for ageing-free operation with cyclic loads

Frequently, converters are not operated with a continuous load, but with cyclic loads which can also briefly exceed the rated converter current.

The selection techniques for ageing-free operation of SITOR fuse links will now be described for four typical load types.<sup>1)</sup>

- Continuous load
- Unknown cyclic load, however with a known maximum current
- Cyclic load with known load duty cycle
- Occasional impulse load from a pre-loaded condition with unknown impulse sequence

In this case the diagrams for the correction factors  $k_{\rm u}$ ,  $k_{\rm q}$ ,  $k_{\rm h}$ ,  $k_{\rm l}$  in Section 4.2 'Rated current  $I_{\rm n}$ , load capacity' as well as the residual value factor RW in Section 4.6 'Taking into account the pre-loaded condition, residual value factor RW' of the 'Technical data' should be observed. The cyclic load factor WL is specified for every fuse link in Section 3 'Characteristics and dimension drawings'.

The required rated current  $I_n$  of the fuse link is determined in two steps:

The rated current h<sub>r</sub> is determined using the RMS value I<sub>rms</sub> of the local current

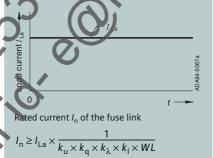
$$I_{\rm n} > I_{\rm rm.} \times \frac{1}{k_{\rm u} \times k_{\rm s} \times k_{\rm h} \times k_{\rm l} \times WL}$$

Permissible load current  $I_n$  of the selected fuse link.

$$I_n' = k_u \times k_q \times k_\lambda \times k_l \times W \times I_n$$

 Please contact us for cyclic loads which cannot be classified in one of the four specified typical load types. 2. The permissible overload duration of the current blocks exceeding the permissible fuse load current  $I_n$  is checked.

Pre-arcing time  $t_{vs}$  (time/current characteristic) x residual value factor  $RW \ge$  overload duration  $t_v$ 


In this case, the pre-loading factor

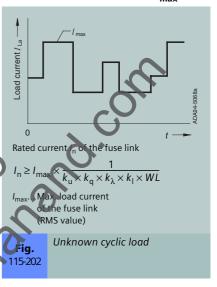
$$V = \frac{I_{\rm rms}}{I_{\rm n}}$$

and the characteristics 'Permissible overload and pre-arcing time for a pre-loaded condition (Pig. 110-196, characteristic a) and "Time/curren characteristic" for the selected fuse link are required.

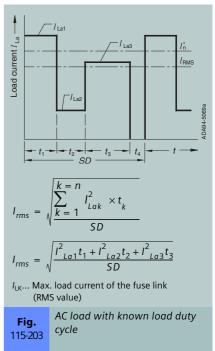
If the determined overload duration is less than the associated, specified overload duration, then a fuse link with a higher rated current. (taking into account the rated voltage  $V_n$  and the permissible interrupting  $I^2t$  value) should be selected and the sheck repeated.

#### L15.1 Continuous load




La... load current of the fuse link (RMS value)

Less than 1 interrupt oper./ week: WL = 1 More than 1 interrupt operation per week: WL = refer to characteristic values


**Fig.** 115-201

Continuous load

## 4.15.2 Unknown cyclic load – however with a known maximum current $I_{\rm max}$



## 4.15.3 Cyclic load with known load duty cycle



# 4.15.4 Occasional impulse load from a pre-loaded condition with unknown impulse sequence

The required rated current  $I_n$  of the fuse link is determined in two steps:

1. The rated current In is determined using the pre-loaded current  $I_{pre}$ .

$$I_n > I_{pre} \times \frac{1}{k_u \times k_a \times k_\lambda \times k_l \times WL}$$

Permissible load current  $I_n'$  of the selected fuse link.

$$I_n' = k_u \times k_a \times k_\lambda \times k_l \times WL \times I_n$$

2. The permissible overload duration of the impulse current  $l_{\rm impulse}$  pre-arcing time  $t_{\rm vs}$  (time/current characteristic) x residual value factor RW

 $\geq$  impulse time  $t_{\rm impulse}$  is checked In this case the pre-loading factor

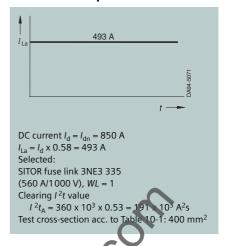
$$V = \frac{I_{rms}}{I_{n'}}$$

and the characteristics 'Permissible overload and pre-arcing time for a pre-loaded condition' (Fig. 196, characteristic a) and 'Time/current characteristic' for the selected fuse link are required.

If the determined overload duration is less than the required overload duration  $t_{\rm impulse}$ , then a fuse link with a higher rated current  $I_{\rm n}$  (taking into account the rated voltage  $V_{\rm n}$  and the permissible clearing  $I^2t$  value) should be selected and the check repeated



#### 4.16 Selection examples


For a converter assembly with a circuit configuration (B6) A (B6) C, whose rated DC current  $I_{\rm dn}$  = 850 A, fuse links should be selected which are then used as branch fuses. The selected fuse is shown for various operating modes of the converter assembly.

Converter assembly data

- Line supply voltage V<sub>N</sub>
   = 3-ph. 400 V AC 50 Hz
- Recovery voltage V<sub>W</sub>
   = 360 V = V<sub>N</sub> x 0.9
   (for inverter commutation faults)
- Thyristor T 508N (eupec company),  $I^2t$  value  $\int i^2 dt = 320 \times 10^3 A^2s$  (10 ms, cold)
- Fuse links, natural air cooling, ambient temperature +35 °C
- Connection cross-section for the fuse links, copper: 160 hm<sup>2</sup>
- Conversion factor
   DC current i<sub>0</sub> (fuse load current i<sub>La</sub>
   I<sub>La</sub> = I<sub>d</sub> x 0.58

For the following examples, for loads, which exteed the rand J C current of the converter assembly, it is assumed that the conver er assembly is dimensioned for these load conditions.

## 4.16.1 Continuous, interruption-free load

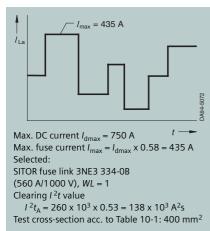


The following correction factors should be applied:

$$_{\parallel} = 1.02 (0) = +35 \,^{\circ}\text{C}$$

 $k_q = 0.91$  (connection cross-section at both ends, 40 % of the test cross-section)

= 1.0 (valve conducting period  $\lambda = 120^{\circ}$ )


 $k_1 = 1.0$  (no forced air cooling)

Required rated current In of the SITOR fuse link:

$$I_{n} \ge I_{La} \times \frac{1}{k_{u} \times k_{q} \times k_{\lambda} \times k_{l} \times WL} = 493 \text{ A}$$

$$\frac{1}{1.02 \times 0.91 \times 1.0 \times 1.0 \times 1.0} = 531A$$

#### 4.16.2 Unknown cyclic load, however with known maximum current

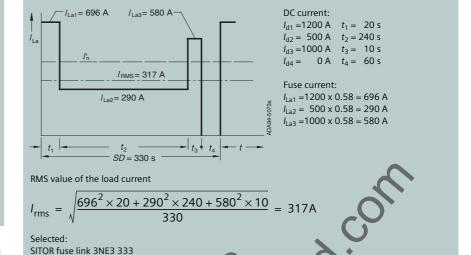


The following correction factors should be applied:

$$k_{\rm u} = 1.02 \ (\vartheta_{\rm u} = +35 \ ^{\circ}\text{C})$$

 $k_{\rm c} = 0.91$  (connection cross-section at both ends, 40 % of the test cross-section))

 $k_{\lambda} = 1.0$  (valve conducting period  $\lambda = 120^{\circ}$ 


 $k_1 = 1.0$  (no forced air cooling)

Required rated current  $I_n$  of the SITOR fuse link:

$$I_n \ge I_{\text{max}} \times \frac{1}{k_u \times k_q \times k_\lambda \times k_l \times WL} = 435 \text{ M}$$

$$\frac{1}{1.02 \times 0.91 \times 1.0 \times 1.0 \times 1.0} - 469 \text{ A}$$

#### 4.16.3 Cyclic load with known load duty



should be app

$$k_{\rm u} = 1.02 \, (v_{\rm u} = +35 \, {}^{\circ}{\rm C})$$

(450 A/1000 V), WL = 1

Clearing  $I^2t$  value  $I^2t_A = 175$ Test cross-section acc. to ₹

ooth ends, 50 % of the test cross-section)

SITOR fuse link:

$$I_n \ge I_{rms} \times \frac{1}{k_u \times k_q \times k_2 \times k_1 \times WL} = 317 \text{ A}$$

$$\frac{1.02 \times 0.94 \times 1.0 \times 1.0 \times 1.0}{1.02 \times 0.94 \times 1.0 \times 1.0 \times 1.0} = 331 \text{ A}$$

Permissible load current  $I_n$  of the selected fuse link.

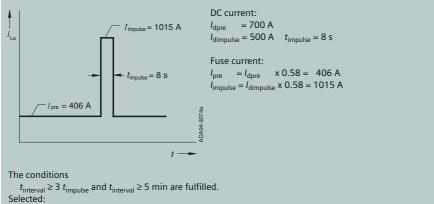
$$I_n' = k_u \times k_d \times k_\lambda \times k_l \times WL \times I_n = 1.02 \times 0.94 \times 1.0 \times 1.0 \times 1.0 \times 450 = 431 \text{ A}$$

2. The permissible overload duration of the current blocks which exceed the permissible fuse load current In' is checked

Pre load factor: 
$$V = \frac{I_{rms}}{I_{n'}} = \frac{317}{431} = 0.74$$

Residual value factor RW: for V = 0.74 from characteristic a (Fig. 196,

frequent impulse/load duty cycle currents) RW = 0.2


Current block  $I_{1a1}$ : Pre-arcing time  $t_{vs}$ : 230 s (from the time/current charac-

teristic for 3NE3 333)  $t_{vs} \times RW = 230 \text{ s} \times 0.2 = 46 \text{ s} > t_1$ 

Current block I<sub>La3</sub>: Pre-arcing time  $t_{vs}$ : 1200 s (from the time/current charac-

#### 4.16.4 Occasional impulse load

#### from a pre-loaded condition with known impulse sequence



SITOR fuse link 3NE3 333

(560 A/1000 V), WL = 1

Clearing  $I^2t$  value  $I^2t_A = 360 \times 10^3 \times 0.53 = 191 \times 10^3 \text{ A}^2\text{s}$ 

Test cross-section acc. to Table 10-1: 400 mm<sup>2</sup>

The following correction factors should be applied::

$$k_{\rm u} = 1.02 \ (\vartheta_{\rm u} = +35 \ ^{\circ}\text{C})$$

$$k_{\rm q} = 0.91$$
 (connection cross-section at both ends, 40 % of the test cross-section)

$$k_{\lambda} = 1.0$$
 (valve conducting period  $\lambda = 120^{\circ}$ )

$$k_1 = 1.0$$
 (no forced air cooling)

1. Required rated current 
$$I_n$$
 of the SITOR fuse  $V_n$ 

$$I_{n} \ge I_{\text{pre}} \times \frac{1}{k_{u} \times k_{q} \times k_{\lambda} \times k_{l} \times WL} = 406 \text{ A}$$

$$\frac{1}{1.02 \times 0.91 \times 1.0 \times 1.0 \times 1.0} = 437 \text{ A}$$

Permissible load current  $I_n'$  of the selected fuse link:

$$I_n' = k_u \times k_a \times k_\lambda \times k_l \times WL \times I_n = 1.02 \times 0.91 \times 1.0 \times 1.0 \times 1.0 \times 560 = 520 \text{ A}$$

2. The permissible overload auration of the current blocks which exceed the permissible fuse load current  $I_{\text{impulse}}$  is checked

Pre-loading factor: 
$$V = \frac{I_{pre}}{I_{p'}} = \frac{406}{520} = 0.78$$

0.78 from characteristic a (Fig. 196, Residual value factor RW:for N

re-arcing time  $t_{\rm vs}$ : 110 s (from the time/current characteristic for 3NE3 333)

$$t_{vs} \times RW = 110.5 \times 0.18 = 19.8 \text{ s} > t_{impulse}$$

## **Fuse Monitoring**

The following fuse monitoring devices represent a low-ohmic bypass (circuit-breaker). These monitoring devices are intended for semiconductor protection fuse links which are only used to protect semiconductor components as either phase or branch fuses and are not

intended to be used to bring the converter into a no-voltage condition.

3NP4 and 3NP5 fuse switch disconnectors are available with integrated 3RV.. circuit-breakers (up to 690 V) or with electronic fuse monitoring (up to 500 V).

For more detailed information, refer to Catalog NS K Section 12.

According to DIN VDE 0100, monitoring devices for fuse links which are also intended to simultaneously disconnect the voltage, may only be used if the monitoring circuit is positively disconnected together with the main circuit. When monitoring cable protection fuse links, fused switch disconnectors with mounted circuit-breaker are used as listed in Catalog NS K.

#### 4.17 Circuit-breakers

#### 4.17.1 Application

3RV1611 circuit-breakers (refer to Catalog NS K) are used to monitor phase fuses for connection voltages up to 690 V.

A circuit-bleaker is not suitable to monitor fuses of converters where inverter commutation faults can occur or for those converters where, when a fault occurs, DC voltages 250 V/pole can be fed back into the line supply.

In the DC circuit of a converter, fuse links cannot be monitored using 3RV1611 circuit-breakers.

#### 4.17.2 Mode of operation

Each of the phase fuses to be monitored is connected in parallel to a circuit-breaker path (refer to the following diagram). When the fuse link ruptures, the circuit-breaker trips and signals that the fuse has ruptured.

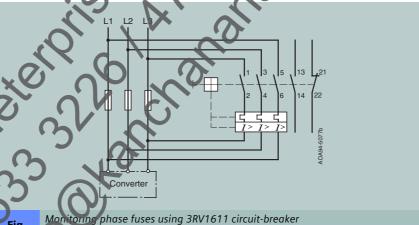



Fig. Monitoring phase fuses using 3RV1611 circuit-breake 119-205

## **Terminology**

This glossary explains the most important terms when using fuse links to protect semiconductor components.

Additional definitions are included in DIN VDE 0636, Part 1 and Part 10.

#### Rated interrupting capacity

The rated interrupting capacity specifies the highest prospective short-circuit current  $I_p$  which a fuse link can interrupt at 1.1x rated voltage and under specified conditions.

#### **Rated frequency**

The rated frequency is the frequency for which the fuse link is designed regarding the power dissipation, current, voltage, characteristics and interrupting capacity.

#### Rated voltage V<sub>n</sub>

The rated voltage is the voltage stamped on the fuse and which is defined according to the test conditions and the operating voltage limits.

For SITOR fuse links, the rated voltage is always an RMS AC voltage.

Pit full swap is a links, the rated voltage is always an RMS AC voltage.

#### Rated current In

The rated current of a fuse link is the current which is stamped on the fuse link and which the fuse can conduct under the specified conditions (refer to Section 'Technical information') without having a negative impact on the function of the fuse.

#### **Utilization Categor**

The utilization Category is a designation of the Function Class of a fuse link in conjunction with the element to be protected.

- Utilization Category gs:
   Full range semiconductor protection fuse for use in fused switchgeal and switching devices
- Utilization Category gR.
   Full range semicor ductor protection
   Utilization Category aR:
   Partial range semiconductor protection

#### Let-through current Ic

The let-through current  $I_c$  is the highest instantaneous current value which is reached when a fuse ruptures.

#### **Let-through current characteristic**

The let-through current characteristic specifies the let-through current at 50 Hz as a function of the prospective current.

#### **Function Class**

The function class designates the capability of a fuse link to conduct specific cu rents without damage and to interrupt overcurrents within a specific range (range of the interrupting capacity).

#### **Function Class a**

Partial range fuses:

Fuse links which conduct currents up to at least their rated current and can interrupt currents above a certain multiple of their rated current up to the rated interrupting capacity.

#### **Function Class g**

Full range fuses:

Fuse links which can continually conduct currents up to at least their rated current and can interrupt currents from the smallest pre-arcing current up to the rated interrupting capacity.

#### I2t value

The  $I^2t$  value (Joule integral) is the integral of the square of the current over a specified time interval:

$$I^2 t = \int_{t_0}^{t_1} i^2 dt$$

The  $I^2t$  values for pre-arcing ( $I^2t_s$ ) and for clearing ( $I^2t_A \triangle$  sum of the pre-arcing and arcing  $I^2t$  value).

#### **Power dissipation**

The power dissipation is the power which is dissipated in a fuse-link which is conducting its rated current under specified conditions.

#### Arc voltage $\hat{U}_{\varsigma}$

The arc voltage is the highest voltage which occurs at the fuse link connections during the arcing time.

#### Residual value factor RW

The residual value factor is a reduction actor which is used to determine the permissible load duration of the fuse link with currents which exceed the permissible load current  $I_n$  (refer to the rated current  $I_n$ ).

#### Prospective short-circuit current $I_p$

The prospective short-circuit current is the RMS value of the AC current component at the line frequency or the value of the DC current which can be expected in the case of a short-circuit which occurs after the fuse if it is considered that the fuse will be replaced by an element with an impedance which can be neglected.

#### Virtual time t<sub>v</sub>

The virtual time is the time which is obtained if the  $l^2t$  value is divided by the square of the prospective current

$$= \frac{\int i^2 dt}{I_p^2}$$

The virtual pre-arcing time  $t_{vs}$  is specified in the time/current characteristic.

### velic load factor WL

The cyclic load factor is a reduction factor for the rated current for cyclic load states.

#### Recovery voltage V<sub>w</sub>

The recovery voltage (RMS value) is the voltage which is present at the connections of a fuse link after the current has been interrupted.

#### Time/current characteristic

The time/current characteristic specifies, for specific operating conditions, the virtual time (e.g. the pre-arcing time) as a function of the prospective current.

## Index

|            | Page         |                                          |                  | Page                     |                                 | Page    |
|------------|--------------|------------------------------------------|------------------|--------------------------|---------------------------------|---------|
| Numerics   |              | A                                        |                  |                          | F                               |         |
| 3NC1 0     | 76           | Accessories                              |                  | 114                      | File number                     | 6       |
| 3NC1 1     | 78<br>78     | Accessories for cyl                      | indrical fusos   | 30                       | Function Class                  | 120     |
| 3NC1 4     | 80, 82       | Accessories for l.v.                     |                  | 26                       | Function Class a                | 120     |
| 3NC1 5     | 80, 82<br>84 | Actual clearing tim                      |                  | 109                      | Function Class <i>g</i>         | 120     |
| 3NC2 2     | 86           | Applications                             | le               | 4                        | Fuse bases                      | 114     |
| 3NC2 43    | 34           | Arc <i>I</i> <sup>2</sup> <i>t</i> value |                  | 108                      | Fuse currents                   | 114     |
| 3NC5 531   | 92           | Arc voltage $\hat{U}_s$                  | 111, 113         |                          | for converter operation         | 107     |
| 3NC5 8     | 92           | Arc voltage U <sub>s</sub>               | 111, 113         | ),   _                   | Fuse puller                     | 114     |
| 3NC7 32    | 96           | В                                        |                  |                          | Fused switch disconnector       | 114     |
| 3NC8 43    | 40           | B2                                       | Co               | 103                      | asca since Option leads.        |         |
| 3NE1 00    | 44           | B6                                       | ~                | 107                      | G                               |         |
| 3NE1 00    | 50           | DO                                       | (V) A            | 107                      | Terminology                     | 120     |
| 3NE1 02    | 44           | c • <i>G</i>                             | 2                |                          | Guide number                    | 6       |
| 3NE1 22    | 50           |                                          |                  | 34                       | Salucianisc.                    | · ·     |
| 3NE1 30    | 46           | Characteristics Clearing Rt value        | 100              | 3 <del>4</del><br>3, 113 |                                 |         |
| 3NE1 32    | 50           | Continuous interru                       |                  | , 113                    | <sup>12</sup> t value 1         | 08, 121 |
| 3NE1 40    | 46           | free load                                | (                | 116                      | I.v.h.b.c./h.v.h.b.c. Recycling | 6       |
| 3NE1 41    | 48           | Continuous load                          |                  | 147                      | Important notes                 | 6       |
| 3NE1 42    | 52           | Converter circuit                        | / X              | 107                      | Important information           | 6       |
| 3NE1 80    | 42           | Correction factor k                      |                  | 108                      | Indicator                       | 114     |
| 3NE3 22.   | 60           | Correction factor                        | ^                |                          | Influence of the power factor   | 109     |
| 3NE3 23.   | 62.4         | ambient temper                           | rature           | 105                      | Internal short-circuit          | 4       |
| 3NE3 4     | 02,04        | Correction factor                        | 10               |                          | Inverter commutation faults     | 4       |
| 3NE3 55    | 88           | connection cros                          | s section        | 105                      | Inverter operation              | 104     |
| 3NE3 6     | 66           | Correction factor                        |                  |                          |                                 |         |
| 3NE4 1     | 58           | valve conduction                         | g period         | 106                      | L                               |         |
| 3NE4 15    | <b>1</b> 88  | Correction factor                        | a l'annu         | 106                      | Load capacity                   | 104     |
| 3NE4 30B   | 56           | increated air co                         | oling            | 106                      |                                 | 10, 120 |
| 3NE4 36B   | 90           | Cyclic load factor Cyclic load factor V  | 10F              | 106                      | Let-through current characteri  |         |
| 3NE4 33.7  | <b>—</b>     | Cyclic load vith                         | VL 105           | 5, 121                   | Liability exclusion             | 7       |
| 3NE4 337 6 | 90           | known load dut                           | v cycle 115      | 5, 117                   | <b>3</b>                        |         |
| 3NE5 4.    | 68           | MIOWII Iodd ddi                          | y cycle 113      | , , , , ,                | M                               |         |
| 3NE5 433-1 | 68           | D                                        |                  |                          | M1                              | 107     |
| 3NE5 6     | 56           | DC current applica                       | tions            | 113                      | M2                              | 107     |
| 3NE6 4     | 4            | Defining the rated                       |                  | 115                      | M3                              | 107     |
| 3NE6 437-7 | 94           | Dimension drawing                        |                  | 98                       | M3.2                            | 107     |
| 3NE7 4     | 72           | Double-3-pulse cer                       | -                |                          | M6                              | 107     |
| 3NE7 6     | 72           | bouble 5 pulse cel                       | rter tap erreart | 107                      | Maximum clearing time           | 112     |
| 3NE8 01    | 54           | E                                        |                  |                          | 3                               |         |
| 3NE8 71    | 36, 38       | Environmental frie                       | ndly recycling   | 6                        |                                 |         |
| 3NE9 440-6 | 94           | External short circu                     |                  | 4                        |                                 |         |
| 3NE9 450   | 94           | zaternar snort ente                      |                  | •                        |                                 |         |
| 3NE9 450-7 | 94           |                                          |                  |                          |                                 |         |
| 3NE9 6     | 74           |                                          |                  |                          |                                 |         |

| Page                                                                   |                                                       | Page    |          |
|------------------------------------------------------------------------|-------------------------------------------------------|---------|----------|
| 0                                                                      | Т                                                     |         |          |
| Occasional impulse load 116, 118                                       | Taking into account                                   | 440     |          |
| Ordering and engineering data 10                                       | the pre-loading condition  Taking into account        | 110     |          |
|                                                                        | the recovery voltage                                  | 108     |          |
| P                                                                      | Technical information                                 | 104     | <b>•</b> |
| Parallel circuit 111                                                   | Temperature rise                                      | 111     |          |
| Permissible DC voltage 113                                             | Test cross-sections                                   | 105     |          |
| Possible arrangements 4                                                | Three-pulse center-tap circuit                        | 107     |          |
| Power dissipation 111, 121                                             | Time/current characteristic                           | 121     |          |
| Properties 4                                                           | Time/current characteristics                          | 109     |          |
| Prospective short-circuit current $I_p$ 121                            | Two-pulse bridge circuit Two-pulse center-tay ci cuit |         |          |
| R                                                                      | .60                                                   | 1 20    |          |
| Rated frequency 120                                                    | U                                                     |         |          |
| Rated interrupting capacity 111, 120                                   | Al-                                                   | 15, 117 |          |
| Rated voltage $V_n$ 104, 120                                           | Updated information                                   |         |          |
| Rated current $I_n$ 104, 120                                           | Utilization category                                  | 120     |          |
| Rectifier operation 104                                                | VX O                                                  | $\sim$  |          |
| Recovery voltage 108                                                   | Irtual cleaning time                                  | 109     |          |
| Recovery voltage $U_{\rm w}$ 121                                       | Virtual time                                          | 121     |          |
| Recycling 6                                                            | witted till                                           | 121     |          |
| Regulations 3                                                          | wO                                                    |         |          |
| Residual value factor RW 110, 127                                      | W. 3                                                  | 107     |          |
| RMS value of the branch current 107 RMS value of the phase current 107 | (1)                                                   |         |          |
| kivis value of the phase current. 107                                  | $\mathcal{O}_{\mathcal{I}}$                           |         |          |
| s                                                                      |                                                       |         |          |
| Selection examples 116                                                 | <b>V O</b>                                            |         |          |
| Series circuit 112                                                     | <b>&gt;</b> /                                         |         |          |
| Single-phase bi-directional circuit 107                                | 0                                                     |         |          |
| Single-pulse center-tap circuit 107                                    |                                                       |         |          |
| SITOR feet links 10, 34                                                |                                                       |         |          |
| SITOR fuse links for special applications 22,88                        |                                                       |         |          |
| Six-pulse bridge circuit                                               |                                                       |         |          |
| Six-pulse center tap circuit 107                                       |                                                       |         |          |
| Switch disconnector with fuses 114                                     |                                                       |         |          |

### **Notes**

Asuchan 1233 ON Anchananand. Com